
AD-A14 910 SOFTWANE ACQUISITON MANAGER'S WORKSTATION (SAM/WS) i/

SEM DESION(U) SOFTWARE ARCHITECTURE AND ENGINEERING

INC ARLNGNOON VA GOHCAMPBEL ET AL 30 APR 64

INCA NS IIFD S -C84R004 NASA 4-82 C 5428 FIG 9/2 N

IIIEIIIIIIIII
EEIIIIIIIIIIIE
IIIIEIIIIEEEEE
IIIIIIIIIIEEIl
EIIIIIIIIIIImu

1.-

MICROCOPY RESOLUTION TEST CHANAT
NATN'NAL HUJftfAki 1 IANL)AR[l>:At A

Ok

117

Unclassified
s1tCUOIm T CLA234FCATION 00 TWO$ PAGE ellho Owe 9er...

REKRT DOOJUETATION PAGE 811FRA CONSPcLOT s1
N00014-82-C-0428 E '-L11CI "

4. TITS raw "Wolo. TPE air REPOpt? a PeRCoo COvSVRED

Final Report
Software Acquisition Manager's Workstation Seq No. A015
(SAM/WS) System Design s EPRIGOG EOTM~E

7. AW 7heOVSe# 8. CONTRACT ZR GriAST NdUMERIW.)

G. H. Campbell
J. W. Sapp N00014-82-C-0428

S. 101RWOMNG 41toIZATIO01 NAMEC AND AOONES 10. PR:OGRAMA ELEMEKT PROJ4CT. TASK
Software A&E, Inc. aaWR lo 81Gm

1401 Wilson Blvd., Arlington, VA 22209

11. CONTSOOLLJOOG OPPICZ NAME4 AND AGGRE1SS '3. REPotOR ATE1

Department of the Navy A4ril 30. 1984
IS. &UORPPGEsOffice of Naval Research, Arlington, VA 18

MA N,ONIokiua A4ENCY AMf aOOESI E00 t U.E (m Cudebs 0111"I 11. 3ECIRTY CLASS. food o~lo)Pv

OSD STARS Program Office Unclassified
Rm 3D-139 (400 Army Navy Drive) 5 eck4U.FIZAT n= OGU14ANOG

The Pentagon, Washington, DC 20301 m

I hsdonamest k"r be=s apyawe
be pableroleme md ON Ib_

hk~Ibudm saft"L IMbW I
r7. D@SrIUUOjTN S?,TTMENTl (eS0 amow" moomot J. 8amma 20. to we(-.. sw A.00")

1S. SUP41"E4ENTARYNOS

It. Key GSM210 (GON~i- 001 ovw 'oww# "eom ."m 4%-Wt or 4~ NAE ns

software acquisition, expert systems, management workstations,
design

2L. AeSRA~Tc. f '-- I~NAmA~Wf~e4*A This report describes a
system design for a prototype software acquisition manager's work-
station. The development of this system will apply software engineer-
ing, microcomputer-based personal workstation, and knowledge-based
expert system technology in the support of management tasks. The
goal of the prototype development is to demonstrate generic charac-
teristics of an application workstation for augmentingthe managemen
skills and technical expertise of an acnligitip,, Ino

00 t*"173 EItyloN as, I NOV e a9 assOLs-TE Unclassified
SEtCURITV CLASSFICATION4 of roots PAtEl O E .aI

31 January 1973

SECuiRIY CLAMICAYU of -ross 0&4&M*h a", £ae..

StCUI'Ff CLANIt"Tilif Ofr~esP&OV~m mm ome

SOFTWARE ACQUISITION MANAGER'S

WORKSTATION (SAM/WS)

SYSTEM DESIGN

Accession For

SAE-DC-84-R-004 NI R&

DTI C TAB

Unann1ounced

jT ic ati

Distributionl/_

AvailabilitY Codes
Avail and/ar

Dist Special

April 20, 1984

Software Architecture and Engineering, Inc.

1401 Wilson Boulevard, Suite 1220

Arlington, Virginia 22209

PREFACE

Work on the system-level design for the Software Acquisition Manager's

Workstation (SAM/WS) has been supported in part by the Office of Naval

Research (ONR) under contract N00014-82C-0428.

Since this document represents a reasonably innovative approach to

describing a design, as well as attempting abstract solutions to many complex

and poorly understood problems, it is likely that substantial change will

occur over a period of time. Any suggestions for improving the approach to

specifying a design, particularly for general interactive application systems,

or better solutions to particular module design aspects would be welcomed.

I

TABLE OF CONTENTS

PREFACE i

1. INTRODUCTION ... I

1.1 OVERVIEW .. 1

1.2 SYSTEM DESCRIPTION ... 2

1.3 GENERAL REFERENCES 3

2. MODULE DECOMPOSITION

2.1 LEVEI 1 DECOMPOSITION .. 6

2.2 LEVEL 2 DECOMPOSITION - HARDWARE HIDING MODULE 7

2.3 LEVEL 2 DECOMPOSITION - SYSTEM SOFTWARE MODULE 7

2.4 LEVEL 2 DECOMPOSITION - APPLICATION SOFTWARE MODULE 8

2.5 LEVEL 3 DECOMPOSITION - VIRTUAL COMPUTER MODULE-..................... 9

2.6 LEVEL 3 DECOMPOSITION -VIRTUAL DEVICE MODULE 9

2.7 LEVEL 3 DECOMPOSITION - DATA FACILITY MODULE ... oo 10

2.8 LEVEL 3 DECOMPOSITION - COMPUTER EXTENSIONS MODULE 10

2.9 LEVEL 3 DECOMPOSITION - USER INTERFACE MODULE 11

2.1Q LEVEL 3 DECOMPOSITION - APPLICATION DEFINITION AIDS MODULE 12

2.11 LEVEL 3 DECOMPOSITION - SAM GENERAL EXPERT MODULE.................. 14

2.12 LEVEL 3 DECOMPOSITION - ACQUISITION REQUIREMENTS DEFINITION MODULE..14

2.13 LEVEL 3 DECOMPOSITION - ACQUISITION PACKAGE DEVELOPMENT MODULE 14

3. MODULE DEFINITIONS 15

3.0KG NOTATION AND STANDARD ORGANIZATION 15

3 .HH HARDWARE HIDING MODULES HH-1

3 .DF SS DATA FACILITY MODULES DF-1

3.CE SS COMPUTER EXTENSIONS MODULES CE-I

3 .UI SS USER INTERFACE MODULES JUI-1

3.AD SS APPLICATION DEFINITION MODULES AD-1

3 .GE AS SAM GENERAL EXPERT MODULES.................... GE-i

3.AR AS ACQUISITION REQUIREMENTS DEFINITION MODULES AR-

3.AP AS ACQUISITION PACKAGE DEVELOPMENT MODULES AP-1

am

1. INTRODUCTION

This document describes the system design for a Software Acquisition ,

Manager's Workstation (SAM/WS). This design is based on the external

requirements definition for the SAM/WS prototype [SAM rqmt].

1.1 OVERVIEW I -

The SAM/WS is being developed to demonstrate the potential for improving

support for software development managers through the application of software

engineering technology. While this technology has been used previously in

support of designers and programmers, the needs of management have not been

addressed. The importance of management decision making in the success of

software development, both in terms of cost and product quality, suggests the

need for better support.

The primary problem areas of software development management to be

addressed are inexperience in the management of software development and lack

of technical understanding. The SAM/WS will integrate three technologies that

together offer the possibility of reducing these problems:

microcomputer-based workstations, knowledge-based expert system technology,

and standard management tools. Expert system technology, in particular, will

be useful in providing capabilities for assistance in manager decision

making. While each of these are generally available separately, no attempt

has been made to integrate them into a useful system; the SAM/WS system

development will do this.

j 0023c

1.2 SYSTEM DESCRIPTION

The SAM/WS is intended to support the activities of a software acquisition

manager. The design views the system as the combination of a generic,

hardware/software workstation facility and additional, application-specific

software. The generic components provide application-independent capabilities

for hardware independence and sophisticated user interface, data storage, and

application development components of interactive application systems. The

application-specific components of the current design address two acquisition

management subactivities: requirements definition and acquisition package

development. Software supporting other subactivities or extensions of these

will be added to the design incrementally in the future. Within the

requirements definition subactivity, the design addresses the determination of

required computer and software standards that apply to an acquisition. Based

on user-supplied information characterizing the system to be acquired and

applicable constraints on the acquisition, the SAM/WS will identify required

and suggested standards which apply to the acquisition and guidance for

tailoring these standards to the particular acquisition. Within the

acquisition package development subactivity, the design addresses support for

contract package development for the full scale development portion of the

acquisition process. The SAM/WS will provide automatic generation of

incomplete acquisition package components (i.e., contract documents), with

facilities for completion and tailoring of them to the needs of the particular

acquisition. In addition, the SA2l/WS will have facilities for tutorial

explanation of workstation use and of the acquisition process for

inexperienced users.

0023c 2

tI

1.3 GENERAL REFERENCES

[SAM rqmt] Software A & E, Inc. Software Acquisition Maaager's

Workstation (SAM/WS) - External Requirements Definition,

SAE-DC-83-R-021, November 4, 1983.

(SCR design] K. H. Britton, P. C. Clements, A. Parker, D. L. Parnas, J.

Shore. A-7E Software Module Guide, Naval Research

Laboratory, Washington, D.C. 20375, NRL Memorandum Report

4702, December 8, 1981.

[SCR stdorg] K. H. Britton, D. L. ParnasA Standard Organization for

Specifying Abstract Interfaces, Naval Research Laboratory,

Washington, D.C. 20375, NRL Report in preparation November

1983.

0023c 3

2. MODULE DECOMPOSITION

A module decomposition defines a conceptual view of the characteristics of

a software system design. The decomposition described here presents a design

based on the principle of information hiding, modeled on [SCR design].

Following this principle, a module is characterized by the information about

some aspect of the system design hidden within the implementation of that

module. Such "secrets" are represented to other modules only via an

explicitly defined interface that defines the information in an abstract form

that is insensitive to potential changes in implementation. The objective of -f

this approach to design is to produce a system which is easy to change in

anticipated ways and is easy to understand due to localization of information.

The purpose of this guide is to give the reader interested in some aspect

of the system the ability to locate the particular module which implements

that aspect. The module decomposition results in a hierarchy of modules such

that at each level in the hierarchy, each aspect of the system which is likely

to change is the responsibility of exactly one module at that level. Each

module at a given level may be further decomposed into a set of modules that

together represent the information for which the parent module is

responsible. This decomposition proceeds until each terminal module can be

further decomposed only if secrets are shared between some of the components.

Figure 2.1 depicts the SAM/WS module decomposition as a guide to the following

textual description.

0023c 4

.I II ' l'= .., ,

HARDWARE HIDING MODULE (HH)
VIRTUAL COMPUTER MODULE (VC)

VIRTUAL DEVICES MODULE (VD)
VIRTUAL DISPLAY MODULE (CRT)

VIRTUAL PRINTER MODULE (PRT)
VIRTUAL MASS STORAGE MODULE (STR)

SYSTEM SOFTWARE MODULE (SS)
DATA FACILITY MODULE (DF)

DATA STORAGE MODULE (DST)
DATA MODELS MODULE (MOD)

COMPUTER EXTENSIONS MODULE (CE)

ABSTRACT DATA TYPE MODULE (TYP)
ABSTRACT LANGUAGE MODULE (LNG)
SYSTEM CONFIGURATION MODULE (CFG)

USER INTERFACE MODULE (UI)

VIRTUAL DISPLAY WINDOW MODULE (WIN)
INPUT HANDLER MODULE (INP)
DISPLAY EDIT/FORMAT MODULE (EDF)

EXTERNAL FORMS MODULE (FRM)
APPLICATION DEFINITION AIDS MODULE (AD)

PACKAGE INTEGRATION MODULE (PKI)
EXPERT SYSTEM MODULE (EXP)

ABSTRACT OBJECT MODULE (OBJ)

APPLICATION SOFTWARE MODULE (AS)

SAM GENERAL EXPERT MODULE (GE)
PROJECT DOMAIN ENTRY/EXIT MODULE (PDA)

CONTEXT DEFINITION MODULE (CDF)
PRODUCT DEVELOPMENT MODULE (PDV)

TUTORIAL ASSISTANCE MODULE (TUT)
UTILITY SERVICES MODULE (UTL)

ACQUISITION REQUIREMENTS DEFINITION M'nDULE (AR)

APPLICABLE POLICIES AND STANDARDS SPECIALIST MODULE (PSS)

ACQUISITION PACKAGE DEVELOPMENT MODULE (AP)
STATEMENT OF WORK SPECIALIST MODULE (SWS)

CONTRACT DATA REQUIREMENTS LIST SPECIALIST MODULE (DRS)

WORK BREAKDOWN STRUCTURE SPECIALIST MODULE (WBS)
SPECIFICATION SPECIALIST MODULE (SPS)
REQUEST FOR PROPOSAL SPECIALIST MODULE (RPS)

FIGURE 2.1. SAM/WS MODULE DECOMPOSITION

0023c 5

2.1 LEVEL 1 nvCOMPOSITION

AL the top level, the SAM/WS system is decomposed into three modules:

hardware hiding, system software, and application software. This

decomposition was chosen to accommodate a natural view of which module

embodies particular information about system function.

The hardware hiding module represents all information about the underlying

hardware used to implement the system. Hardware characteristics that are

likely to change are abstracted in virtual device descriptions so that changes

can be accommodated without changes to either of the other modules. The

primary secrets of this module are the actual hardware and software interfaces

required by the hardware components of the SAM/WS. Secondary secrets are the

data structures and algorithms which implement the virtual devices provided.

The system software module provides software functions and data structures

that are of general use in any potential workstation, regardless of

application. This module is defined to adequately support the SLM application

as currently defined but is more general o allow flexibility, both to

accommodate different applications and to support extension of SAM/WS

capabilities. The primary secrets of this module are the implementations of

its interfaces.

The application software module embodies the requirements of the SAM

application as defined in sections 2 and 3 of [SM rqmt]. Changes in SAM/WS

requirements cause changes in the implementation of this module. The primary

secrets of this module are the SAM requirements and how user visible effects

are determined.

0 023c 6

2.2 LEVEL 2 DECOMPOSITION - HARDWARE HIDING MODULE

The hardware hiding module is decomposed into two modules: virtual

computer and virtual devices.

The virtual computer module hides characteristics of general purpose

computers likely to be used for workstation implementation. The primary

secrets of this module are the computer's instruction set, the number of

processors, concurrent processing capabilities, and physical memory and

architecture characteristics.

The virtual devices module hides characteristics of peripheral devices

likely to be used in a workstation implementation. The secrets of this module

are the characteristics of these peripheral devices that are likely to change

if the physical devices are replaced.

2.3 LEVEL 2 DECOMPOSITION - SYSTEM SOFTWARE MODULE

The system software module is decomposed into four modules: data

facility, computer extensions, user interface, and application definition aids.

The data facility module defines structures and functions for logical data

storage and access. The secrets of this module are how data is physically

stored and retrieved or otherwise derived.

The computer extensions module provides a higher level view and abstracts

the logical capabilities of the virtual computer through abstract data type,

programming language, and system construction facilities. The secrets of this

module are how the necessary data and programs are implemented.

0023c 7

II

The user interface module provides an extension of hardware hiding module

facilities for system in ;raction with the user. This module defines

facilities for sophisticated user input and output, including multiple windows

and external formatting of application objects. The secrets of this module

are the programs and data structures necessary to provide these facilities.

The application definition aids module provides facilities which are

useful in defining conceptual objects and functions for an application. These

facilities allow the use of domain-independent expert system technology,

integration of separately developed application packages, and access to

conceptual models of application objects and associated operations. The

secrets of this module are the programs and data structures necessary to

provide these facilities.

2.4 LEVEL 2 DECOMPOSITION - APPLICATION SOFTWARE MODULE

The application software module is decomposed into three modules: SAM

general expert, acquisition requirements definition, and acquisition package

development.

The SAM general expert module implements the functions of the SAM general

expert described in section 3.1 of [SAM rqmt]. This module provides all of

the user facilities needed to use the workstation in a SAM context. These

facilities include helping the user identify products to be developed,

understand the operation of the workstation, and better understand software

acquisition management and software engineering technology. Facilities of

general use in product development are provided. The secrets of this module

are the general requirements for supporting SAM activities, including how

application specialists are coordinated and share information.

0023c 8

The acquisition requirements definition module defines the products of SAM

associated with the acquisition requirements definition phase. The secret of

this module is the form and content of these products and their derivation.

The acquisition package development module defines the product of SAM

associated with the acquisition package development phase. The secret of this

module is the form and content of these products and their derivation.

A

2.5 LEVEL 3 DECOMPOSITION - VIRTUAL COMPUTER MODULE

The virtual computer module is decomposed into a number of modules. This

decomposition will not be described at this time. All facilities will be

accessed through system software module facilities.

2.6 LEVEL 3 DECOMPOSITION - VIRTUAL DEVICE MODULE

The virtual device module is decomposed into three modules: virtual

display, virtual printer, and virtual mass storage.

The virtual display module defines the characteristics of CRT input/output

devices with bit-mapped or character, color or monochrome display and ascii

character input keyboard with program defined function keys and user-movable

cursor. The secrets of this module are the actual hardware and software

interfaces for keyboard input and image display between a CRT and the computer.

The virtual printer module defines the characteristics of a hardcopy

output device for ascii character and bit-map graphics output. The secrets of

this module are the actual hardware and software interfaces for image output

to a printer from the computer.

0023c 9

The virtual mass storage module defines the characteristics of a data

storage device based on fixed and removable media which allows logical file

definition and direct and sequential access to data pages. The secrets of

this module are the actual hardware and software interfaces for storage and

retrieval of data on mass storage by the computer and the association between

logical and physical storage.

2.7 LEVEL 3 DECOMPOSITION - DATA FACILITY MODULE

The data facility module is decomposed into two modules: data storage and

data models.

The data storage module provides facilities for definition of abstract

data storage. Access to this abstract storage is provided through various

data model interfaces (e.g., relational). The secrets of this module are how

abstract storage is constructed in terms of logical storage facilities and how

data models determine the placement of data in logical storage.

The data models module provides access to data not physically stored in

abstract storage but derivable from other data. Such modelled data is derived

through application of filtering and extrapolation functions. The secrets of

this module are the formal models of data relationships that define the

filtering and extrapolation functions and the implementation of these models.

2.8 LEVEL 3 DECOMPOSITION - COMPUTER EXTENSIONS MODULE

The computer extensions module is decomposed into three modules: abstract

data type, abstract language, and system configuration.

0023c 10

The abstract data type module provides facilities for definition and use

of abstract data types. Application-specific type derivation is supported.

The secrets of this module are the representation of data values and the

implementation of operations on each type.

The abstract language module defines concrete programming language

interfaces based on an abstract programming language interface to the

facilities of the virtual computer. Several languages, including Lisp,

Fortran, and C, are supported, each with its own interface definition. The

Becrets of this module are the implementations of each language.

The system configuration module provides for construction of application

modules and of application systems from component modules. Facilities are

provided for tailoring of module implementations, selection of alternative

implementations of a module, selection of a set of modules for executable

system composition, and construction and validation of an application system.

The secrets of this module are the representation of application modules and

systems and the programs and data structures for their construction and

manipulation.

2.9 LEVEL 3 DECOMPOSITION - USER INTERFACE MODULE

The user interface module is decomposed into four modules: virtual

display window, input handler, display edit/format, and external forms.

The virtual display window module provides for the definition of virtual

windows of variable size and position on the virtual display. Facilities are

included for association of internally formatted data with a window for

display. The secrets of this module are the representation of virtual

windows, the mechanisms for obtaining and displaying data in a window, and the

implementation of window operations.

0023c 11

The input handler module provides facilities for processing input data to

create logical inputs independent of input mechanism. The secrets of this

module are the mechanisms for obtaining and identifying input data-and

associating it with a display window.

The display edit/format module provides facilities for formatting and

modifying displayable objects, particularly text valued objects. The secrets

of this module are the internal representation of data objects with formatting

guidelines associated and the transformations necessary between internal and

external representations to implement the formatting and modification

facilities.

The external forms module allows for definition of application-defined

forms (templates, frames) in an external representation for use in data

display and input. These form definitions can be parameterized for filling

and interpreting of fields with variable content. The secrets of this module

are the internal representation of these forms and the programs needed to

support parameterization and data access.

2.10 LEVEL 3 DECOMPOSITION - APPLICATION DEFINITION AIDS MODULE

The application definition aids module is decomposed into three modules:

package integration, expert system, and abstract object.

The package integration module provides for the integration of separately

developed packages into an application system. Facilities are provided for

defining package interfaces that define the formal parameters of package

functions and application object access functions to be used for data access

by the package. The secrets of this module are the programs and data

structures used to pass data between a package and the rest of a system.

0023c 12

The expert system module provides facilities for the use of domain
independent expert system technology in an application system. These include

knowledge base definition and access functions that support reasoning and

control, explanation, and justification of this reasoning in application

object terms. The secrets of this module are the internal representation of

knowledge, the implementation of inferencing techniques for reasoning, the

mechanisms used to support control, explanation, and justification, and the

mechanisms for modifying application object information.

The abstract object module provides for the definition, management, and

use of abstract application objects and actions. Types of objects can be
defined, instantiated (named), and used as parameters of abstract actions

associateO with concrete application functions. Objects can be associated

with or'.er objects, have explanation text attached, and have data attributes

and functional attachments. The secrets of this module are the internal

representations of objects, attributes, and attachments.

0023c 13

2.11 LEVEL 3 DECOMPOSITION - SAM GENERAL EXPERT MODULE

The SAM general expert module is decomposed into five modules as defined

in section 3.1 of (SAM rqmt]: project domain entry/exit, context definition,

product development, tutorial assistance, and utility services.
The secrets

of each of these modules are the respective functions required.

2.12 LEVEL 3 DECOMPOSITION - ACQUISITION REQUIREMENTS DEFINITION MODULE

The acquisition requirements definition module is decomposed into one

module as defined in section 3.2 of [SAM rqmt]: applicable policies and

standards specialist. The secrets of this module are the rules and mechanisms

for determining standards applicable to an acquisition context.

2.13 LEVEL 3 DECOMPOSITION - ACQUISITION PACKAGE DEVELOPMENT MODULE

The acquisition package development module is decomposed into five modules

as defined in section 3.2 of (SAM rqmt]: statement of work specialist,

contract data requirements list specialist, work breakdown structure

specialist, specification specialist, and request for proposal specialist.

The secrets of each of these modules are the rules and mechanisms for

producing the associated products.

0023c 14

3. MODULE DEFINITIONS

For each of the level 3 modules identified in the preceding section, the

system-level design specifies the design of an interface. An interface is a

abstract definition of facilities provided by a module for access to

capabilities implemented within that module. A module provides only those

facilities that require knowledge of the secrets of that module for

implementation. The interface defines what the implementors of client modules

can assume will remain static regardless of underlying implementation

changes. It also defines what the implementor of the module has to implement

(given that unused facilities need not be implemented).

Along with each module's interface, the specification provides

justifications for its design, to be used as a guide for implementation and

future design revisions. This justification includes assumptions made by the

designer that justify what facilities the module should have, a description of

issues considered that suggested alternative designs, and guidance to the

implementor for approaches that would satisfy the design.

3.1 NOTATION AND STANDARD ORGANIZATION

The organization of the module specifications and the notation used within

them is derived from [SCR stdorg]. The notation consists of standard

bracketing symbols used as an abbreviation mechanism. Any bracketed

identifier is separately defined in a dictionary within the specification so

that descriptions using the identifier can be concise and omit redundant

information. The bracketing adds information by categorizing all identifiers

into a small number of classes as follows:

0023c 15

10

+ident+ "ident" is the name of a facility of the module that can be

referenced at execution time by client modules

++ident++ "ident" is the name of a facility of the module that can be

referenced at system creation time by client modules

[ident] "ident" is an abstract data type which can be used as specified

as a parameter to the facilities of a module; [XXX ident] can be

used to refer to a data type defined in another module

(identified by its abbreviated name "XXX")

ident! "ident" represents some aspect of the abstract internal state of

the module that is necessary to adequately characterize the

operation of certain facilities

%ident% "ident" is a description of a constraint on the use of a runtime

facility that specifies how to avoid incorrect use of that

facillry

%%ident%% "ident" is a description of a constraint on the use of a system

creation facility that specifies how to avoid incorrect use of

that facility

0023c 16

i.

i

Each module specification has an introductory paragraph and two major

subsections, an interface definition and design support. The introductory

paragraph characterizes the role of the module in the overall system. The

interface definition has three components:

exported facilities the facilities available for reference by client

modules: each facility has (1) an identifier by which

it is referenced, (2) a set of parameters each of

which is specified as some abstract data type and some

mode of use (I: input, 0: output, 1/0: input/output,

I_opt: input optional, 0_opt: output optional, Oret:

output returned), (3) a set of constraints that I>

indicate what constitutes improper use of the facility

that could lead to incorrect results, and (4) a

description of the results of invoking the facility;

a local dictionary the definition of all bracketed terms used in defining

exported facilities;

information hidden a description of the secrets that characterize the

module and its facilities.

Design support consists of four components:

interface assumptions

assumptions made by the designer that justify the

facilities provided by the module: an assumption

indicates why certain facilities are sufficient for

expected uses or justify the form facilities take on

the basis of external constraints on the

implementation; discovery of an invalid assumption

usually requires module redesign;

0023c 17

D_ | ,L . . ' h __ . -

design issues alternative approaches considered in the design of

some aspect of the modules interface: a design issue

is some question on the form the interface should take

about which several alternatives were considered; the

approach taken is justified in terms of its benefits

relative to those alternatives;

implementation/configuration information

nonbinding guidance from the designer to the

implementor of the module: this includes any ideas or

assumptions the designer has about how the module

should be implemented or configured for use with other

modules; also the designer may anticipate that the

module's facilities will be used in limited ways that

the implementor should enforce;

references identification of published papers that influenced the

interface design, describe implementations of similar

systems, or discuss related concepts.

0023c 18

3.HH.VC Virtual Computer (VC) Module

The virtual computer module defines the components and facilities of an

abstract computer that can be represented in software that executes on a

general purpose computer system. This module allows the development of a

software system that is independent of the instruction set, data types, and

physical characteristics of a particular computer system and, thus, reduces

the difficulty of moving the software to different hardware.

3.HH.VC.1 Interface Definition

3.HH.VC.l.l Exported Facilities

Facilities of the VC module are subdivided into four areas: data

manipulation, sequence control, concurrency control, and external device

access. Facilities in each area are described only in general terms at this

time since all will be accessible only via the facilities of the System

Software/Computer Extensions/Abstract Language module.

Data Manipulation Functions

(1) provides several primit-ive type classes and constructors from which

all data objects are defined:
type classes: real, integer, timeinterval, bitstring,

character, semaphore, reference

contructors: entity, array

(2) provides functions for:

definition of simple data types with (constrained)

characteristics of a type class
construction of typed data entities

construction of arrays of typed data
assignment, comparison, and computational operations on typed

entities and arrays

Sequence Control Functions

(i) functions for definition of functions with typed parameters and a body

consisting of program statements

0024c HH-l

--

A-I II I ...

(2) program statement constructs for parameterized, recursive function
invocation, sequential statement execution, repetition of a set of
program statements with a mechanism for conditional termination,
conditional execution of a set of program statements, and exclusive
conditional statement grouping that executes only a single statement

set associated with a true condition
(3) constructs for defining, raising, and handling undesired events
(4) functions for creation and use of timers for measuring real time

intervals and for signalling completion of time periods

Concurrency Control Functions

(1) functions for definition of static processes that execute an
associated function either when specific events occur or at regular
intervals

(2) functions for definition, instantiation/invocation, and termination of
dynamic processes (within the context of a static process)

(3) identification of regions of program statements to exclude concurrent
execution of potentially interferring statements of a set of processes

External Device Access Functions

(i) access for synchronous control and data input/output on ports to
external hardware devices

(2) definition of semaphores for the recording of asynchronous data input
from external hardware devices

3.HH.VC.l.2 Local Dictionary

3.HH.VC.l.3 Information Hidden

1. The physical components and structure of the computer(s) that are used

to implement the virtual computer.

2. The software mechanisms used to implement the functions and constructs

of the virtual computer.

0024c HH-2

3.HH.VC.2 Design Support

3.HH.VC.2.1 Interface Assumptions

3.HH.VC.2.2 Design Issues

3.HH.VC.2.3 Implementation/Configuration Information

1. The facilities assumed to be provided by this module are modelled on

Reference 1 from the NRL Software Cost Reduction project. That

document provides examples of the form VC facilities might take in a

more complete interface specification.

2. None of the facilities of this module will be implemented directly.

All will exist conceptually as a minimal semantic base for the

abstract semantics of the interface to the System Software/Computer

Extensions/Abstract Language (LNG) module. Particular concrete

versions of LNG module interfaces may or may not provide all of the

facilities described as supported by the VC module.

3.HH.VC.2.4 References

1. D. L. Parnas, K. H. Britton, D. M. Weiss, P. C. Clements, Interface

Specifications for the SCR (A-7E) Extended Computer Module, NRL

Memorandum Report 4843, Naval Research Laboratory, Washington, D. C.,

March 29, 1983.

0024c HH-3

3.HH.CRT Virtual Display (CRT) Module

The virtual display module defines the characteristics of a CRT

input/output device consisting of an output display with a user-movable cursor

that determines the user's focus of interest and an ascii-mapped input

keyboard with additional program-defined function and control keys. A CRT can

have either a character or a bitmap display and can produce either color or

monochrome images.

3.HH.CRT.I Interface Definition

3.HH.CRT.I.l Exported Facilities

Configuration Functions

Name Parameters Constraints

++defn crt class++ pl:[crt type];l
p2:[displ_type];I

p3:[screen width];I
p4:[screen-height];I
p5:[color attr];l

defines the characteristics of a class pl of CRT devices.

++s-max__crts++ pl:[TYP integer];I
assigns a value to :max CRTs:.

+gmax crts4 pl:[TYP integer];Oret
returns the value of !max CRTs!.

Initialization Functions

Name Parameters Constraints

+init+ pl:[crttype];I %undefnd CRT type%
p2:[VC device id];I %dev slot asgnd%
p3:(crtid];O ret %too many CRTs%

allocates a physical CRT device of type pl accessible as a physical device
named by p2.

+release+ pl:[crtid];I

releases a physical CRT allocation (has no effect if pl does not represent
an allocated CRT).

0024c HH-4

+g_crtattr+ pl:[crtidl;l %CRT not defined'.
p2:[displtype];O
p3:[screen_width];O
p4:[screenheight];O
p5:[color attr];O

returns the characteristics of CRT pl.

+defn cursor+ pl:[crtid];I %CRT not defined%
p2:[TYP displelem];I %no bitmap capab%
p3:[offset];I

defines the visible form p2 of the cursor for (bitmap) CRT pl; the offset
p3 (measured relative to the lower left corner of p2) determines a point
:focus! of the cursor on the CRT screen at any time.

Input/Output Functions

Name Parameters Constraints

+readkeybd+ pl:[crtid];I %CRT not defined%
p2:[key];O ret

returns the [key] p2 corresponding to the next key (combination) depressed
on the keyboard of CRT pl.

+write-image+ pl:[crtid];l %CRT not defined%
p2:[TYP displelem];I %no bitmap capab%
p3:[areal;l

replaces the contents of [area] p3 of the screen of CRT pl so that image p2
is displayed with the upper left corner of p2 in the upper left corner of'
p3; the characteristics of p2 (e.g., color, font) will be taken as advice
on how to display the image but may vary to satisfy CRT constraints; if a
needed characteristic of p2 has not been defined, an arbitrary choice will
be made.

Cursor Control Functions

Name Parameters Constraints

+scursorposn+ pl:[crtid];l %CRT not defined%
p2:[offset];l %invalid area%

moves the cursor so that its image is displayed with its :focus! at
[offset] p2 of the screen of pl.

+g cursorposn+ pl:[crtid];l %CRT not defined'
p2:[offset];O

returns the [offset] p2 on the screen of pl at which the cursor :focus: is
currently located.

+enable/disable cursor+
pl:[crtid];I %CRT not defined%

allows/prevents user movement of the cursor associated with CRT pl
(movement is enabled when the CRT is initialized).

0024c HH-59

3.HH.CRT.1.2 Local Dictionary

[area] a [locni, which defines the lower left corner of a

rectangular partition of a CRT screen, and an [offset]

to the partition's upper right corner, which defines

the partition's size.

[bmscreenheight] a (TYP integer] representing the number of !pixel:s in
the vertical dimension of the CRT screen.

[bmscreen.width] a [TYP integer] representing the number of !pixelts in
the horizontal dimension of the CRT screen.

(ch_screenheight] a (TYP integer] representing the number of character

lines on the CRT screen.

(ch screen width] a (TYP integer] representing the number of character

columns on the CRT screen.

[cntl key] a [TYP char] identifying a user input which can be

interpreted as a CRT control action.

(color attr] enumerated: $color$ or $monochrome$.

(crtid] a unique identifier for an allocated CRT device.

%CRT not defined% a [crtid] is being used that does not represent an

allocated CRT device.

[crttype] a [LNG name] representing a class of physically

equivalent CRT devices.

%dev slot asgnd% the indicated (VC deviceid] is already in use for some

other device.

[displtypel [TYP enum : $char$ or tbitmapt].

:focus: the (locn] defining the position of the cursor within
!screen area:.

[func key] a [TYP integer] identifying a key or key combination

having no CRT defined meaning.

%invalid area% an [area] is referenced which is not contained

completely within !screen area: for a [crtid].

[key] the [TYP union] of ([TYP char), [func key), [cntl key)).

0024c HH-6

.4i

pI

7

[locn] an [offset] from the lower left corner of a CRT screen
defining a !pixel: on the screen.

i.
:max CRTs! the maximum number of CRTs that can be used

concurrently in the system.

%no bitmap capab% the specified CRT cannot display an image whose
definition includes bitmaps.

[offset] a list of [TYP integeris, the first of which represents .
a horizontal length and the second of which represents
a vertical length on a CRT screen; these lengths are
specified in the same units as [screen height] and
[screen width].

:pixel! the smallest unit on a CRT screen that can be displayed.

!screen area! an [area] with [locn] equal to (0,0) and [offset]
determined by +gcrtattr+.

[screen height] [ch screen height] or [bm screen-height) depending on
an associated [displ_type].

(screen width] [ch screen width] or [bm screen-width] depending on an

associated [displ_typel.-

%too many CRTs% !max CRTs: are currently allocated.

%undefnd CRT type% no CRT class has been defined with name pl.

3.HH.CRT.1.3 Information Hidden

1. The hardware and software interfaces to physical display devices.

0024c HH-7p.

3.HH.CRT.2 Design Support

3.HH.CRT.2.1 Interface Assumptions

1. This module can be configured to support several types of physical CRT

input/output device. Each type can be distinguished as either for

character or for bitmap display and as for either color or monochrome

image display.

2. Every CRT will be associated one-to-one with a Virtual Computer device

id. The device id determines the actual physical routing of 1/0.

Each CRT must be allocated exactly once before use and must be

deallocated afterwards to allow reuse of the Virtual Computer device

id.

3. The form of the cursor displayed on a bitmap CRT screen can be

modified to be any bitmap image. The form and focus point of the

cursor on a character screen is fixed.

4. It is possible to detect the depressing of a key on the CRT keyboard.

Each key (and some combinations of keys) can be mapped into either the

Virtual Computer character set ([TYP char]) or represents CRT control

or program-definable function input. Undefined keys or key

combinations either are not detected or have an unpredictable effect.

5. It is possible to modify the contents of a CRT screen to display a

specified image in a specified area of the screen. This is restricted

in that an image created from a bitmap cannot be displayed on a

character screen CRT.

6. The position of the cursor on a CRT screen can be determined or

modified.

0024c HH-8

p

3.HH.CRT.2.2 Design Issues

I. Should this interface provide for use of conventional as well as

bitmap CRT devices? It is desirable to provide limited workstation

facilities on conventional CRTs. Much of the functionality of

intended workstation applications are text oriented and can be

presented on such CRTs.

2. What level of graphics capabilities should this interface assume?

While some graphical display is useful (e.g., for partitioning the

screen into windows or for icon menus), this is within the bounds of

normal bitmap display. Some, such as window boundaries, are-also

possible with character display. More complex graphics CRTs are not

likely to be used as a workstation-controlling device. A workstation

to support an application needing such capabilities is beyond the

scope of this design.

3.HH.CRT.2.3 Implementation/Configuration Information: None.

3.HH.CRT.2.4 References: None.

0024c HH-9

p

, i

3.HH.PRT Virtual Printer (PRT) Module

The virtual printer module defines the characteristics of hardcopy output

devices intended for ascii character (with variable font) or bit-map graphics

output.

3.HH.PRT.1 Interface Definition

3.HH.PRT.I.1 Exported Facilities

Name Parameters Constraints

++defn_prtclass++ pl:[prt type];l
p2:[displtype1;I
p3:[page_width];I
p4:[page_length];I

defines the characteristics of a class pl of hardcopy printers.

+init+ pl:[prt type];I %undef d PRT type%
p2:[VC device id]; %dev slot asgnd%
p3:(prtid];O Yet

allocates a physical hardcopy printer of type pl accessible as a physical

device named by pl.

+release+ pl:[prtid];I
releases a physical printer allocation (has no effect if pl does not

represent an allocated printer).

+g_prtattr+ pl:[prtid];I %PRT not defined%
p2:[displtype];O

p3:[page_width];O
p4:[pagelengthl;O

returns the characteristics of printer pl.

+write-image+ pl:[prtid];l %PRT not defined%

p2:[TYP displeleml;l %no bitmap capab%

provides for output of Image p2 on printer pl.

3.HH.PRT.l.2 Local Dictionary

[bm_page_height] a [TYP integer] representing the number of :pixel:s in

the vertical dimension of the printer page.

[bn_pagewidth] a [TYP integer] representing the number of !pixel:s in

the horizontal dimension of the printer page.

0024c HH-10
At

[ch page_height] a [TYP integer] representing the number of character
lines on the printer page.

[ch page_width] a [TYP integer] representing the number of character
columns on the printer page.

%dev slot asgnd% the indicated [VC device id] is already in use for some

other device.

[displtype] [TYP enum : $char$ or bitmap$].

%no bitmap capab% the specified printer cannot display images created
from bitmaps.

[page_height] [chpageheight] or [bm_pageheight] depending on an
associated [displ_type].

(page_width] (ch page width] or (bm page_width) depending on an

associated [displ__typeT.

%PRT not defined% a [prtid] is being used that does not represent an

allocated printer.

[prtid] a unique identifier for an allocated printer.

[prt.type] a [LNG name] representing a class of physically
equivalent printers.

%undefnd PRT cype% no printer class has been defined with the given name.

3.HH.PRT.1.3 Information Hidden

I. The hardware and software interfaces to physical hardcopy printers.

r"0024c HH-lI

3.HH.PRT.2 Design Support

3.HH.PRT.2.1 Interface Assumptions

1. This module can be configured to support several types of physical

hardcopy print devices. Each type can be distinguished as either for

character or for bitmap display. All produce a monochrome image.

2. Every printer will be associated one-to-one with a Virtual Computer

device ID. The device ID determines the actual physical routing of

output. Each printer must be allocated exactly once before use and

must be deallocated afterwards to allow reuse of the Virtual Computer

device ID.

3. Depending on device type (a character type printer cannot receive a

bitmap image), it is possible to cause a hardcopy image of a bitmap or

text string to be generated on the output media.

3.HH.PRr.2.2 Design Issues: None.

3.HH.PRT.2.3 Implementation/Configuration Information: None

3.HH.PRT.2.4 References: None.

0024 c HH-12

I'

3.HH.STR Virtual Mass Storage (STR) Module

The virtual mass storage module defines the characteristics of devices for

persistent data storage. Both fixed and removal storage components are

available for use.

3.HH.STR.I Interface Definition

3.HH.STR.l.l Exported Facilities

Name Parameters Constraints

+define-file+ pl:[file id];I

p2:[TYP type];I
p3:[TYP type];I

p4:[accesskey];O ret
provides for definition of a logical data storage file pl containing

entries of type p2 ; each value in the domain of type p3 uniquely selects
one of the entries of pi; p4 provides a key for owner control of file

access.

+g/saccess+ pl:[file_ id];I

p2:[access key];I
p3:[accessT;l
p4 :[access.key];O ret

provides an access key p4 with access rights defined by p3 to file pl where

p2 is the file owner's access key.

+read+ pl:[file id];l
p2:[accesskey];I
p3:[entryid;l
p4:tentry!;O

p5:[TYP boolean];Oret
provides for retrieval of an entry p4 identified by p3 in file pl; p5 =

$FALSE$ indicates that no entry existed for p3 so that the read failed.

+lock+ pl:[fileid];I

p2:[access key];1

p3:[entryid];I
p4 :[TYP boolean];I
p5:[write lock];O
p6:[TYP boolean];O_ret

reserves the entry identified by p3 in file pl for use with write lock p5;
p4 = $TRUE$ indicates that the call waits for write permission to continue
while p4 - $FALSE$ indicates no wait if the entry is in use; p6 - tFALSE$

(when p4 - $FALSE$) indicates that the entry was in use and could not be

locked.

0024c HH-13

+write+ pl:[writelock];l
p2:!entryv;l

causes replacement of the file entry locked with write lock pl by value p2 .

+delete+ pl:[write lock];I
causes deletion of the file entry locked with write lock pl.

+unlock+ pl:[writelock];l
returns the write lock pl allowing the reserved file entry to be released

for subsequent write access.

3.HH.STR.I.2 Local Dictionary

(access] (TYP enum: tread$, $write$, $control$].

[accesskey] a unique identifier that gives particular access rights
to a particular file.

[entryid] a value in the domain of the index for a file.

[fileid] a [VC name] uniquely representing a file.

[writelock] a unique identifier which provides write/delete access
control of a particular entry of a file.

3.HH.STR.l.3 Information Hidden

1.

3.HH.STR.2 Design Support

3.HH.STR.2.1 Interface Assumptions

1. Data storage can be viewed as a set of logical files consisting of

typed entries, each of which is distinguished by the domain values of

an index type. Access to each file can be controlled by a unique

access key generated when the file is created. Restricted access

rights can be provided by generation of new access keys given a known

access key.

0024c HH-14

2. Access to files are needed to read, write, and delete entries of a

file. Write access requires the ability to lockout concurrent access

to a record.

3.HH.STR.2.2 Design Issues

1. How to map file entries into physical storage (e.g., hashing of the

index value, sequential as created, sequential on index value).

3.HH.STR.2.3 Implementation/Configuration Information

3.HH.STR.2.4 References: None.

0H

0024c HH-15

3.DF.DST Data Storage (DST) Module

The data storage module provides facilities for thp definition, storage,

and access of persistent data. Three models of data store structure are

supported: relational, network, and data space. These can be used

independently or in combination to most conveniently provide data storage.

3.DF.DST.1 Interface Definition

3.DF.DST.l.l Exported Facilities

Relational Data Storage

Name Parameters Constraints

++-RDataBase++ p1:[name];l
p2:[ownerkey];O-ret

creates a relational database for permanent data storage; an owner key p2

is created for controlling access.

++relation++ pl:[database name];I
p2:[-name];l
p3::TYP list: of [attribute];l
p4 :[candidate key];I
p5:!TYP list: of [candidate key];I

creates a (null valued) relation named by p2 in-database pl consisting of
attributes p3 of which attributes identified by p4 is a primary key and p5
identifies a set of alternate keys.

++virtual-rein++ pl:[database name];I
p2:[name]; I
p3:[relnlexpr];I

defines a relation named by p2 logically, but not physically, a member of
database pl that is equivalent to relational expression p3; all [relationis
referenced in p3 must be real or virtual members of pl.

+acquire [databasenamel+
pl:[RDBI;O ret

initiates access to the specified database.

+release+ p1:[RDB];l
terminates access to the database associated with pl.

+s [relation namej+ pl:[RDB];I

p2:[relation];I
assigns relation p2 as the value of the specified relation in database pl.

0029c DF-l

+g_[relationname]+ pl:[RDBJ;I

p2:[relation];O ret
returns p2, the specified relation in database pl.

+union+ pl:[relation];l
p2:[relationl;l
p3:[relationl;O_ret

returns a relation p3 which is the union! of relations pl and p2.

+diff+ pl:[relationl;I
p2:[relation];i
p3:[relation];O ret

returns a relation p3 which is the 'difference! of relation pl from
relation p2.

+product+ pl:[relation];I

p2:[relation];I
p3:[relation];O ret

returns a relation p3 which is the !product: of relations pl and p2 .

++selectorop++ pl:[type];l
p2::TYP list: of [selector def];I

defines operators for use in !theta selection: of relations on attributes
of type pl.

+select+ pl:[relation] ;I
p2:[selector];l
p3:[relation];Oret

returns a relation p3 which is the 'theta selection! p2 of relation pl.

+project+ pl:[relation] ;I
p2:[set] of [attribute namel;l
p3:[relationl;O ret

returns a relation p3 which is the :projection: p2 of relation pl.

Network Data Storage

Name Parameters Constraints

++NDataBase++ pl:[name];I
p2:[owner__key];Oret

creates a network database named by pl for permanent data storage; an owner
key p2 is created for controlling access.

+-+virtualNDB++ pl:[name];1
p2:(database name];I

defines a virtual network database named by pl contained in network
database p2 (real or virtual).

0029c DF-2

F]

+-+record++ pl:[real database namehl
p2:[name4;l
p3:!TYP list: of [attribute];l

defines a class of record named by p2 for database pl consisting of tile
attributes p3 .

++virtual record+-+ pl:fvirtual database name];I
p2:[name] ;I
p3:!TYP list: of ([name], [record-name], [attribute
name]);I

defines a record named by p2 in virtual database pl which is a composite of

attributes from the network database containing pl.

++set++ pl:[database namel;I
p2:[name];l -

p3:[owner spec];lopt
p4::TYP list: of [member spec];l

defines a class p2 of :set: for database p1 with owner records
characterized by p3 and member records characterized by p4 ; if p3 is not

input, a singular set is specified which has no explicit owner.

+open_[databasename]+ pl:[currency];O ret

initiates access to the specified database with a currency p1 context.

+close+ pl:[currency];I

terminates access to the database associated with the currency pl context.

+find_[record_name]+ pl:[currency];I
p2:[currency];O ret

returns a currency p2 which reflects changes to currency pl necessary to
make a (new) record of the type indicated by "[record name]" accessible.

+find_[record name]_in_[set name]+

pl:[currency];I
p2:[currency];O ret

returns a currency p2 which reflects changes to currency pl necessary to
make a (new) record of the type indicated by "[record name]" in the tset.
associated with the current owner of set type "[set name]" accessible.

+find_[set name]owner+
p1:[currency];I
p2:[currency];Oret

returns a currency p2 which reflects changes to currency pi necessary to

make the owner of the set of type "[set name]" in which the current record
is a member accessible.

0029c DF-3

+find_[setname]_member+
pl:[currency];I
p2:[currency];O ret

returns a currency p2 which reflects changes to currency pl necessary to
make a member of the set of type "[set-name]" of which the current record
is the owner accessible.

+get_[recordname]+ pl:[currencyl;I
p2:[record];Oret

returns the current record p2 of type indicated by "[record name]" in the
currency pl database.

+store_[recordnamel+ pl:[currency];I
p2:[record];I
p3:[currencyl;O ret

stores record p2 of type indicated by "[record name]" in the currency p1

database so that currency p3 results.

+erase_[recordname}+ pl:[currency];I

p2:[currency];O ret
removes the current record of type indicated by "[record-name]" from the
currency pl database so that currency p2 results.

+erase_[set-name]_members+

pl:[currency];I
p2:[currencylO ret

removes all records of the database in the currency pl context which are
members of a set of set type indicated by "[set name]" whose owner is the
current record in currency pl so that currency p2 results.

+modify_[record namel+ pl:[currencyl;I
p2:[recordl;l
p3:[currency];O_ret

replaces the current record of type indicated by "[record namel" in the

currency pl database with record p2 so that currency p3 results.

+connect_[record name]_to_[set name]+

pl: [currency] ;I
p2:[currencyl;o ret

adds the current "[record name]" type record to the current "[set name]"
type set in the currency pl database so that currency p2 results.

+disconnect_[record name] from [set namel+

- pl:[currency;Il
p2:[currencyl;Oret

removes the current "[recordnamr :ype record from the current "[set
name]" type set in the currency pl database so that currency p2 results.

0029c DF-4a

Data Space Storage

Name Parameters Constraints a

++DataSpace++ pl:[name];I

p2:[ownerkey];O ret
creates a data space named by pl.

++SuperDSpc++ pl:(name];I
p2::TYP list: of [DSpc_name];I

defines a data space named by pl which is a superset consisting of data
spaces p2.

++entityclass++ pl:[DSpc name];I

p2:[TYP Type];I
p3:[name];I

defines an entity class named by p3 in data space pl whose member entities

are of type p2.

++entityrefclass++ pl:[DSpc name];I
p2:[DSpc name];l
p3:[ent cl name];I
p4:[name];I

defines an entity class named by p4 in data space pl that can be used to
reference the value of entity class p3 in data space p2.

+environ+ pl:[DSpc name];I
p2:[namel';I

creates a referencing environment named by p2 in data space pl such that
every entity name defined in pl refers to exactly one entity in p2.

+replicate+ pl:[environ name];I

p2:[name];I-
creates a referencing environment named by p2 in the same data space as
environment pl with all entities of p2 being copied from pl.

+acquire+ pi:(environ name];L

p2:[contextT;O ret
establishes an exclusive access context p2 to data space environment pl.

+release+ pl:[context;l I

releases access context pl.

+g__[ent cinamej+ pl:[context];I
p2:[value];O ret

returns the value p2 of the "[ent cl name]" entity in the context pl data
space; if the entity named is an entity reference, the value of the
referenced entity is returned.

0029c DF-5

+s lent cl name]+ pl:[context];I
p2 :[value];l

assigns p2 as the value of the "[ent cl-name]" entity in the context p
data space.

+ref [ent cl name]+ pl:[context];I
p2:[environ name];l

establishes the "[ent cl name]" reference entity in the context pl data
space such that the appropriate entity class in environment p2 (which must
be in the appropriate data space) is referenced.

3.DF.DST.1.2 Local Dictionary

[attribute] a !TYP list! specifying an [attributename] and a [TYP
type].

[attributename] a [name] that uniquely identifies an attribute within a
set of attributes that comprise a relation.

[attribute-value] a [LNG value] of the type associated with a particular
[attribute].

[database-name] a [name] which uniquely identifies a database.

[name] a [LNG name].

[ownerkey] a unique identifier that gives access control of a
database to its creator.

Relational terms

[candidate key] a !TYP list! of [attributename] (nonempty) which can
be used to uniquely identify a tuple in the relation
containing the attributes named; none of the named
attributes can be removed from the relation without
endangering this uniqueness property.

:difference: given two [relationis composed of the same
[attribute]s, all (tuple]s that occur in a designated
one of the [relation]s with all [tuplels that occur in
the other omitted.

0029c DF-6

9

!product! given two (relationis having no [attribute namels in
common, a [relation] consisting of a [tuple] for each
pair of [tuplels from those (relation]s, where that

[tuple] includes an [attribute] for each [attribute] of
each [relation].

!projection! a [relation] consisting of all [tuplels of another

(relation] with only specified Lattribute]s of that
[relation] included.

[relation] a [TYP set] of (tuple]s, all of which are defined by
the same set of (attributels.

[relation name] a [name] which uniquely identifies a real or virtual
relation of a database.

[relnlexpri a [relationname] or a [relnlfunc or a !TYP list:

containing two elements: a !TYP list: of [attribute]s
and a [relation].

[relnl func a [LNG expr] consisting entirely of relational

operations to vroduce a [relation] type output.

[selector] a !TYP list: specifying an [attribute name], a
[selectorid] defined for the same type as this
attribute in the relation to which !theta selection: is
to be applied, and a value (possibly another [attribute

name]), also of the same type.

[selectordef] a !TYP list: specifying a (selector idi and an
equivalent (TYP boolean1-valued [LNG func id] that
accepts two input parameters of a specifi7ed [TYP type].

[selectorid] a [name] which uniquely identifies selectors for a
given [type].

:theta selection: a [relation] consisting of all [tuple]s of another
[relation] that satisfy a constraint on the value of
one of its (attribute]s as defined by a specified
(selector].

[tuple] a [TYP lbl setun] of [attribute value]s associated with
the (attributels that define the containing [relation].

:union: given two [relationis composed of the same
[attribute]s, all [tuple]s that occur in either one of
the [relation]s, without repetition of any duplicates.

0029c DF-7

p.

Network terms

[currency] informatifon that provides a context for access to a

network database; identifies a particular database and,
within it, a current record, a current record of each
defined record type, and a current record of each
defined set.

[insertorder] [TYP enum: tfirst$, $1ast$, $nextt, tpriort, tkeyt,

$anyf].

[member spec] a list specifying the [record-name] that characterizes

set members and a [set-key] for this type of member.

[ownerspec] a [recordname] that characterizes set owners.

[record] a [TYP ibl setun] of [attributevaluels associated with
the [attribute]s which defined a particular database
record type.

[recordname] a [name] which uniquely identifies a type of database
record.

:set: an association between one record, distinguished as the

set "owner", and a collection of other records,
characterized as set "members".

[set _key] a :TYP list! of two elements: a [TYP set] of
[attribute namels (whose values can be used to uniquely

identify a set member) and an [insert-order].

[setname] a [name] which uniquely identifies a database :set:.

Data Space terms

[context] an identifier which provides access to a data space

referencing environment.

[DSpcname] a (name] associated with a data space definition.

[entcl name] a [name] associated with an entity class or entity
reference class definition of a data space.

[environname] a [name] associated with a data space referencing
environment definition.

[value] a [LNG value] of a type associated with an entity class
definition within a data space.

0029c DF-8

j

3.DF.DST.l.3 Information Hidden

1. How data stores are represented and stored.

2. How data store entries are created, positioned, and subsequently

located.

3. The implementation of operations on relations and sets.

3.DF.DST.2 Design Support

3.DF.DST.2.1 Interface Assumptions

1. A data store is a grouping of logically related data. The conceptual

organization and elements of a data store are static while the actual

contents are dynamic but persistent (values can change but are

retained until an element is discarded).

2. Three models of data store structure, access, and element

characteristics are useful. These are relational, network, and data

space.

3. The relational model views a database as a collection of "relations"

which are unordered collections of homogeneous "tuples". Every

relation is in third normal form (see Chapter 9 of Reference 2). A

tuple is an unordered collection of typed data items. Each tuple in a

relation contains a single value for each data item (or the item may

be undefined). Relations can be stored into or retrieved from a

database and can be input or output of five types of relational

algebra operations: union, difference, extended cartesian product,

selection, and projection. All other useful operations can be

composed from these.

0029c DF-9

I|

3.DF.DST.2.2 Design Issues

1. Three models of data storage are supported by this module:

relational, network, and data space (or heap). These seem to be the

major extremes currently in use for management of data storage

resources. The network model provides a file-oriented approach to

storage and access of persistent data. The data space model provides

an approach oriented to dynamic allocation of free space independent

of logical associations among data values. The relational model

provides an intermediate approach that groups data into "relations"

that represent functional dependencies among data items grouped

together but is independent of logical associations among these

relations.

2. How to support the use of any of the data store models with data

defined using one of the other models? Or should there be a single

definition facility set with several access models?

3. How to support locking/exclusion in concurrent data access? (resource

control facility in LNG?)

4. How to allow implicit data space environment access associated with a

user process? (e.g., in T-Lisp ,,vhich executes a program body within

the scope of a "locale" construct of data items)

0029c DF-10

p!

3.DF.DST.2.3 Implementation/Configuration Information

1. The definition of the relational interface is derived from the ..

abstract relational model described in Reference 1. The interface

varies as follows: (1) relational operations apply to unnamed as well

as named relations (the validity of this requires verification); (2)

due to (1), the product operation can be applied only to relations

that have no attribute names in common (ambiguity would result,

however this deviation is not desirable); (3) the theta selection

operation is not restricted to ordering relationships (per se) between

values of a type but can be based on any valid comparison between two

values of a type that delivers a boolean-result (this would allow

decision for each data type about how to treat undefined (null)

values); (4) virtual relations are considered the domain of the MOD

module and are omitted here.

2. The definition of the network interface is derived from the

descriptions in Part 4 of Reference 2. Not all capabilities of the

DBTG network model are provided explicitly or in the same form,

particularly implicit operations in that model.

3.DF.DST.2.4 References

1. Date, C. J., "A Formal Definition of the Relational Model", ACM SIGMOD

Record, 13, 1, September 1982, 18-29.

2. Date, C. J., An Introduction to Database Systems, Addison-Wesley

Publishing Company, 1977.

0029c DF-11

3.DF.MOD Data Models (MOD) Module

The data models module provides abstract models for the definition of data

not physically stored but derivable from other data.

3.DF.MOD.l Interface Definition

3.DF.MOD.I.l Exported Facilities

3.DF.MOD.I.2 Local Dictionary

3.DF.MOD.l.3 Information Hidden

1.

3.DF.MOD.2 Design Support

3.DF.MOD.2.1 Interface Assumptions (to be defined)

3.DF.MOD.2.2 Design Issues: None.

3.DF.MOD.2.3 Implementation/Configuration Information: None.

3.DF.MOD.2.4 References: None.

0029c DF-12

-1

3.CE.TYP Abstract Data Type (TYP) Module

The abstract data type module provides abstract definitions of data

representations and operations on those representations. Each representation

can have several implementations, each appropriate to particular usage neeas. .

Data definitions are categorized into two general type classes: scalar valued

and collection valued.

3.CE.TYP.1 Interface Definition

3.CE.TYP.I.l Exported Facilities

Scalar Type Classes

The following scalar type classes are provided: numeric, enumerated,
image, character, and union. Basic scalar types are defined as instances of
these type classes. Types [boolean], [real], and [integer] are builtin
instances of type classes enumerated, numeric, and numeric respectively. The
function definitions immediately following are valid for all scalar type data;
following these are function definitions unique to each of the five base type
classes.

Name Parameters Constraints

+eq/neq+ pl:[type];I
p2:[type];l
p3:[boolean];O ret

indicates whether data values pl and p2 (which must be of the same base
type) have equal/nonequal values.

+extrep+ pl:[type];I
p2:[charstr];O

produces a character string p2 which is a human-readable representation of
the value of pl.

+intrep+ pl:[charstr];I

p2:[type];O opt
p3:(booleanT;Oret

provides a correctly typed value p2 corresponding to character string pi if
p3 - TRUE, indicating a valid value was derivable from pl.

enumerated type class

literal values: a series of characters bracketed by "t"; each type
declaration defines the set of strings (i.e., symbolic
values) that are applicable to entities of that type.

0028c CE-I

~I

++enumtype++ pl:(name];l
p2:!list! of [!enum litval:];I
p3:[booleanl;l

defines an enumerated type named by pl consisting of symbolic values in p2 ,

where p3 indicates whether the value set is ordered allowing ordering
comparisons.

builtin types: [boolean].

+not+ pl:[boolean];l
p2:[boolean];O ret

returns the logical complement p2 of boolean pl.

+and+ pl:[boolean~ ,I

p2:[booleanl;l
p3:[boolean];O ret

returns the logical "and" p3 of borileans pl and p2.

+or+ pl:[boolean];I I -

p2:[boolean];I

p3:[boolean];Oret

returns the logical "or" p3 of booleans pl and p2 .

+xor+ pl:[boolean];I
p2:[boolean];I
p3:[booleanJ;O ret

returns the logical "exclusive or" p3 of booleans pl and p2.

image type class

An "image" is a two-dimensional combination of other images where the unit

elements are a "background" image and a "foreground" image.

literal values: none

+"combinrule"+ pl:[image];Iopt
p2:[image];I opt

p3:[image];O ret
produces the image p3 which is the combination of source images pl and p2

(referred to as Sl and S2 respectively below) under the specified
combination rule; pl and/or p2, respectively, may be omitted only if the
combination rule does not refer to S1 and/or S2. Image combination
consists of determining whether each unit element of p3 should be
"background" or "foreground". A combination rule evaluates corresponding
unit elements of images pl and p2 to determine a truth value where "false"

is equivalent to "background" and "true" is equivalent to "foreground" for
the corresponding unit element in the image p3. The combination rules

are: "BkGnd", "FrGnd", "SIF and S2F", "SlF_and S2B", "SlF", "SlB andS2F",
"S2F", "SlF xor S2F", "SlI or S2F", "SIB and S2B", "SIB xor S2F", "S2B",
"SlF or S2BW, "SlB", "SlB or S2F", "SIB or S2B". - -

0028c CE-2

4%

+clip+ pl:[imagel;l
p2:(offset];l
p3:[extent];[
p4:[image];O_ret

produces an image p4 with extent p3 derived as a subimage of pl with an
!image origin: at offset p2 from the :image origin! jf 11.

+extend+ pl:[image];l
p2:[offset];l
p3:[extent] ;I
p4:Cimage];Oret

produces an image p3 which contains the image pl with its :image origin: at
offset p2 from the :image origin: of pl; any area of p3 not filled by pl
will be filled with background image.

+g_extent+ pl:[image];I
p2:[extent];O ret

returns the extent p2 of image pl7

numeric type class

builtin types: [real] which has no unit of measurement and (integer]
which is a subtype of [real] with a resolution of one

literal values: standard decimal notation (e.g., 123.22, .0034, 256) or
exponent notation (i.e., [real]Etinteger] which
represents [real] * 10 ** [integer]; e.g., 2.7E3 which
is equivalent to 2700.) followed where appropriate by a
units identifier in parentheses (e.g., 35(mph)).

universal constraints: %out of range%

++num type++ pl:[name];I
p2::list! of [units];I

defines a numeric type p1 where p2 identifies valid units of measurement of
values of this type.

++interval++ pl:[name];I
p2:([num type:];L
p3:[range];I
p4:[resol];Iopt

defines a subtype pl of numeric type p2 restricted to range p
3 with a

resolution p4 (1 if omitted); the elements of the range specification must
be a precise multiple of p4 .

+real to [units]+ pl:[reall;l %units in error,

p2:[tinterval typel];Oret
returns a value of the type of p2 of quantity equal to pl when p2 is

measured in the specified units.

0028c CE-3

+[units]_to real+ pl:[:interval type'.I;l %units in error"
p2:[real];O ret

returns a real value p2 which measures the quantity of pl in the indicated
units.

+leq/lt/geq/gt+ pl:[numeric];l %incompat opnds%

p2:[numeric];I
p3:[boolean];O ret

determines whether the value cf pl is less than or equal/less than/greater

than or equal/greater than the value of p2.

+(type] _min/max+ pl:[numeric];Oret

returns the minimum/maximum value in the domain of the indicated numeric

type.

+incr/decr+ pl:[numeric];I

p2:[numeric];O ret
returns the minimum/maximum value p2 in the domain of the type of pl which
is greater/less than pl.

+add+ pl:[numericl;l %incompat opnds%

p2:[numeric];I
p3:[numeric];O ret

returns the sum p3 of pl and p2; all operands must be the same numeric type.

+sub+ pl:[numericl;l %incompat opnds%

p2:[numeric] ;I
p3:[numeric];Oret

returns the result p3 of subtracting p2 from pl; all operands must be the

same numeric type.

++multopnds++ pl:[type];l
p2:tlist: of [units];I
p3:[type];l
p4::list! of [units];I opt
p5:[type];I

p6::list! of [units];I
defines the subtypes that are valid as parameters of the multiplication
operation: p5 defines the type of the result where pl and p3

(interchangably) define the types of the input operands; p2 , p4 , and p6

(which must have the same number of elements) define the input and result
units for the operation (p4 may be omitted if p3 is of type [real]);

multiplication is valid by default for unitless numerics.

+Mult+ pl:[numeric];I %incompat opnds%
p2:[numeric];l
p3:[numericl;O ret

returns the product p3 of pl and p2.

0028c CE-4

Fi

H++div opnds+-+ pl:[type];I
p2::list! of [urits];l
p3:[type];I
p4::list! of [units];l_opt
p5:[type];I
p6:!list: of [units];I

defines the subtypes that are valid as parameters of the division

operation: p5 defines the type of the result where pl and p3 define the
types of the input operands; p2, p4 , and p6 (which must have the same
number of elements) de~ine the input and result units for the operation (p4
may be omitted if p3 is of type [real]); division is valid by default for
unitless numerics.

+div+ pl:Lnumeric];I %incompat opnds%

p2:[numeric];l
p3:[numeric];Oret

returns the quotient p3 of dividing pl by p2.

+mod+ pl:[numeric];I %incompat opnds%
p2:[numeric];I
p3:[numeric];Oret

returns the modulo p3 of pl relative to p2.

+absv+ pl:[numeric];I
p2:[numeric];oret

returns the absolute value p2 of p1.

+comple+ pl:[numeric];I
p2:[numeric];0_-ret

returns the numeric complement p2 of pl.

+truncate+ pl:[numeric];I
p2:[numeric];Oret

returns the maximum value p2 in the domain of the type of pl which has an
integer magnitude less than that of pl.

+round+ pl:[numeric];I
p2:[numeric];O ret

returns the value p2 in the domain of the type of pl which is the integer
magnitude closest in value to that of pl.

Character type class

literal values: any element of the ASCII character set.

Union Type Class

The union type class allows type definitions in which the domain of values

is a discriminated union of the set of values of a set of member types. Each
member type is distinguished by a label for use in access.

0028c CE-5

++uniontype++ pl:[namel;I
p2:tlist! of :memb descr:;i

defines a union type pl whose values are one of the fields identified in p2 .

+!memb name!+ pl:[union];I
p2:(booieanl;O_ret

determines whether the value of union pl is the named field's definition.

+g_ memb name!+ pl:[union];I
p2:[!memb typet];O ret

returns the value p2 of the named field in union pl (the result is
unspecified if the union has the value of a different field).

+s_:memb name!+ pl:[:memb type];I

p2:[union];Oret
returns the union p2 with the value of pl corresponding to the named field.

Collection Type Classes

Name Parameters Constraints

Sequenced Multiset Type Class

A "sequenced multiset" is an implicitly ordered collection of elements, all
of the same type, such that any value in the domain of the type can occur zero
or more times in the collection.

literal values: a :typed list: of Islot valls.

++seqtype++ pl:[name);I
p2:[slot type];I

defines a sequence type named by pI with value members of type p2 .

+-seqtype:+ pl:[seq];O ret
creates an empty sequence pl of the indicated sequence type.

+empty+ pl:[seq];I
p2:[boolean];O ret

determines whether sequence pl contains any elements.

+g first/last+ pl:[seq];I

p2:[seq];O_opt
p3:[slot val];O ret

returns the value p3 of the first/last slot of sequence pl; optionally
outputs the sequence p2 which is identical to pl with the first/last value
slot omitted.

0028c CE-6

+remove first/last+ pl:[seql;l
p2:[slot val];Oopt
p3:[seq];O_ret

returns the sequence p3 identical to sequence pl with the first/last value

slot omitted; optionally outputs the value p2 of the first/last slot of pl.

+add first/last+ pl:[seql;l

p2:[slot val];l
p3:[seq]i;O_ret

creates a sequence p3 identical to pl with value p2 added as a new

first/last entry.

Set Type Class

A "set" is a collection of elements, all of the same type, such that every
value in the domain of the type is in the collection exactly zero or one time.

++settype++ pl:[name];I

p2:[slottypel;I
defines a set type named by pl with value members of type p2.

+!settype!+ pl:[set];Oret

creates an empty set pl of the indicated set type.

+empty+ pl:[set];I
p2:[boolean];Oret

determines whether set pl is empty.

+insert/remove+ pl:[set];I
p2:[slot valI;l

p3:[setl;O_ret
creates a set p3 identical to set pl with value p2 added/removed (a removal
has no effect if p2 is not a member of pl).

+member+ pl:[set];I

p2:[slot val];I
p3:[booleanl;O_ret

indicates whether value p2 is a member of set pl.

+extract+ pl:[set];l
p2:[setl;O
p3:[slot val];O ret

creates a set p2 identical to set pl with an arbitrary member value p3
removed.

0028c CE-7

.. ',,1 , : ";. '

' I I I , , ,

Indexed Multiset Type Class

An "indexed multiset" is a collection of elements, all of the same type,

with an associated "index" such that any value in the domain of the type has
zero or more associated values from the domain of the type of the index by

which the value can be referenced (i.e., the indexed multiset defines a

one-to-many mapping from the index domain to the value domain).

+tix_imset_type-+ pl:[name];I

p2:[type];I
p3:[indextype];I

iefines an indexed multiset type pl with value members of type p2, each of

wh icli is uni uely identified by a value from the domain of index type p3.

<'imset tvpe:t pl:[imset];Oret

Jetines an indexed multiset pl with no member values.

+member+ pl:[imset];I

p2:[index val];l
p3:[boolean];O ret

indicates whether indexed multiset pi contains a member value for index
value p2.

+s elem+ pl:[imset];I

p2:[index valI;l
p3:[imset val];I
p4:[imsetT;O ret

returns a indexed multiset p4 identical to indeied multiset pl with the

member value identified by index value p2 set to value p3.

+g elem+ pl:[imset;l

p2:(index val];I
p3:(imset val];O ret

returns the member value p3 of indexed multiset pl identified by index
value p2.

Labelled SetUnion Type Class

A labelled setunion is a collection of elements, each of which has an

associated name, such that each element has a specified type and may or may
not have a defined value as a member of the collection.

++lblsetuniontype++ pl:[name];I
p2::list: of :memb descr!;I

defines a labelled setunion type pl consisting of at most one value member
for each :memb descr: in p2.

+:Iset type:+ pl:[lblsetun];Oret
defines a labelled setunion pl which has no value members.

0028c CE-8

+has_ memb name:+ pl:(ibl setun];I

p2:[boolean];O ret
indicates whether the labelled setunion pl contains a value for the
specified member name.

+s_:memb name!+ pl:[lbl setun];I

p2:[!memb type:];I
p3:[lbl setun];O ret

defines a labelled setunion p3 identical to labelled setunion pl with the

specified member value set to p2.

+g_memb name!+ pl:[Ibl setun];I

p2:[!memb typel];Oret
returns the value p2 of labelled setunion pl indicated by the specified

member name.

Derived Types

Derivei types are types that are of general usefulness for the class of

systems being designed but not considered inherently primitive.

Character string type class

literal values: a contiguous sequence of one or more [char) (e.g., B,

256, (.), XmA) enclosed in double quotes ("ABC").
++charstrtype++ pl:[name];I

p2:[integer];L

defines a character string type pl which has a maximum length p2.

+null+ pl:[charstr];O ret

returns a zero length charstr pl.

+replc+ pl:[charstr];I

p2:(rangel;l_opt
p3:[charstr];l opt

p4:[charstr];O-ret
returns the string p4 as a copy of string pl with substring indicated by p2
replaced by string p3; if p2 is not input, p3 is appended to the end of pl;
if p3 is not input, string p4 is string pl with the substring indicated by

p2 removed (replaced by a zero length string).

+substr+ pl:[charstr];I
p2:[rangel;l
p3:[charstr];O ret

returns the string p3 which is the substring of p1 indicated by range p2.

+len+ pl:[charstr];I
p2:[integer];O ret

returns an integer p2 which indicates the length of character string pl.

0028c CE-9

Display Medium

Name Parameters Constraints

+medium+ pl:[displ_medium];Oret
creates a display medium pl that can be used to define display attributes

for external presentation of data.

+g/sfont+ pl:[dispi medium];I

p2:[font];O ret/I
returns/defines the character font p2 to be used in bitmap displaying of
text characterized by display medium pl.

+g/s color+ pl:[displ medium];I

p2:[colorT;Oret/I
returns/defines the color p2 in which data characterized by display medium
pl are to be displayed.

+g/sbkgndcolor+ pl:[displ medium];I

p2:[colorT;Oret/I
returns/defines the color p2 of the background on which data characterized

by display medium pl are to be displayed.

+invert-color+ pl:[displ medium];I

p2:[boolean];l
indicates whether the color and background color of data characterized by

display medium pl should be reversed relative to its context.

+g/s underline+ pl:[displmedium];l

p2:[boolean];Oret/I
indicates/defines whether text defined with medium pl is to be underlined.

+g/s_highlight+ pl:[displ__medium];I
p2:[boolean];O ret/I

indicates/defines whether data characterized by medium pl is to be
highlighted.

+g/s blink+ pl:[displ medium];I
p2:[booleanl;O_ret/I

indicates/defines whether data characterized by medium pl is to be blinked

(blinking is the same as turning highlighting on and off periodically).

+merge+ pl:[displmedium];I

p2:[displ medIum];1
p3:[displ~medium];Oret

returns medium p3 which results from merging the features of mediums pl and
p2 so that features of p2 override those of pl.

+complete+ pl:[displ medium];I

p2:[boolean];Oret
indicates whether all features of pl are defined.

0028c CE-1O

0A

Display Objects

+text+ pl:[displ medium];l
p2:[charstr];I
p3:[displelem];O ret

creates a display element p3 corresponding to the character string p2 with
display attribute changes defined by medium pl.

+graphic+ pl:[displ._medium];I
p2:[imagel;l
p3:[displ__elem];O ret

creates a disp'l'y element p3 corresponding to the image p2 with display

attribute changes defined by medium pl.

+gcharstr+ pl:[displ elem];I
p2:[charstr];Oret

provides a character string p2 represented by display element pl.

+g__image+ pl:[displ elem];l
p2:[imageT;O_ret

provides an image p2 represented by display element pl.

+g-medium+ pl:(displ_elem];l
p2:(displmedium];Oret

returns the medium p2 which defines the display attribute changes
applicable to element pl.

+hppend+ pl:fdispl_objl;l opt
p2:[displ_elem];I
p3;(displobj];O ret

creates display object p3 as object pl with element p2 appended.

+join+ pl:[displobj];I
p2:[displ obj];1
p3:[displ-obj];O ret

creates display object p3 as the fusion of objects pl and p2.

+g_nextelem+ pl:[displobj];1
p2:[displelem);Oret

returns the next unaccessed display element p
2 in object pl.

+reset+ pl:[displ_objj;l
makes all display elements of object pl appear unaccessed.

Fonts

++font++ pl:!list: of (([char], [image]) pairs);l
p2:[font];O ret

creates a character font p2 made up of the character/image associations
defined by pl.

0028c CE-Il

+g_text+ pl:[font];l
p2:[charstrl ;I
p3:[image];o ret

returns an image p3 which represents character string p2 in font pl.

Colors

+g-color+ pl:[base color];.t
p2:[color shadej;I
p3:(color];o -ret

creates a color p3 corresponding to shade p2 of base color pl.

+gi-base-color+ pl:[color];l
p2:[base color];Q-ret

identifies the base color p2 of color pl.

+g_color-shade+ pl:[colorl;I
p2:[color shadel;O ret

identifies the shade p2 of color pl.

3.CE.TYP.1.2 Local Dictionary

[base color] [enum : red$, tgreent, tblue$, $black$, $whitet,
$grey$, $orange$, $purple$, $brown$, $yellow$].

[boolean] [enum : true$, $false$].

[char] a [type] in the character type class.

(charstrl a derived [type] for representing character strings
(i.e., sequences of [char] values).

(color] a derived (type] that represents a visible color.

[displ,_elemi a derived [type] used to represent a displayable value.

[displ-medium] a derived [type] used to represent display
characteristics of a [displ,_elem].

[dispi-Obji a derived [type] used to represent a composite of
[displ-elemls with associated [displ,_mediumls.

(color-shade] [enum : light$, $medium$, $dark$].

[enum] a [type] in the enumerated type class

0026c CE-12

[extent] a [iblsetun] of (horiz:[integerl,vert:[integer])
corresponding to an [offset] that represents the size
of an (image] in unit [imagels.

[font] a derived [type] that specifies a mapping between
[char] type values and [image] type values.

[image] a (type] in the image type class.

[imset] a [type] in the indexed multiset type class.

imsettype: the [name] of an [imset].

[imset vall a value of the [type] associated with a particular
(imset].

%incompat opnds% numeric operands must be of the same type.

(index-type] an [enum], an interval type! [numeric] with a finite
domain, or a [lbl setun] all of whose members are of
type [indextype]-

[index val] a value of the [type] associated as an index with a

particular [imset].

[integer] a [numeric] subtype having a resolution of 1.

!interval type! the [name] of a [numeric] subtype that has a [range]
with a finite minimum or maximum value.

[lbl setun] a [type] in the labelled setunion type class.

!list: a series of elements bracketed by parentheses and

separated by commas (e.g., "(1,2,3)" or "(AB, "XYZ")").

!memb descr! a !typed name:.

:memb name: the [name] part of a :memb descr!.

:memb type: the [type] part of a :memb descr:.

[name] an [LNG name].

[numeric] a [type] in the numeric type class including [real],
[integer], defined numeric types (those with associated
units of measurement), and derived :interval type:s.

0028c CE-13

I I I I I i i " a ' '; 1 I I I4. --*

[offset] a :list: of two [integer]s, the first of which

represents a horizontal number of unit [image]s and the
second of which represents a vertical number of unit
(image]s.

%out of range% the result of a numeric operation is out of the [range]
specified as valid for the result.

(range] a !list: of two [realls, the first of which defines a
minimum value and the second of which defines a maximum
value; the literal "INF" can be used in either position

to represent an indeterminate minimum or maximum value.

(real] a (numeric] subtype which has no associated units of
measurement.

[resol] a positive-valued (real] which indicates the minimum
resolution at which numeric values of a given type can
be distinguished.

[seq] a (type] in the sequenced multiset type class.

[set] a [type] in the set type class.

[slottype] the (type] of an element in a (seq] or a [set].

[slot val] the value of an element in a (seq] or a [set).

[type] a data type defined in or using the facilities of this
module; a [name] used in defining a data type.

:typed name! a (name] followed by a colon (":") followed by a [type]
which indicates the type associated with use of the
name.

!typed list: a :list: followed by a colon (":") followed by a [type]
which indicates the type of all elements of the !list:.

[union] a [type] in the union type class.

[units] a (name] which represents a unit of measurement of a
(numeric].

%units in error% an incorrect "units" identifier is used in reference to
a specified :interval type!.

0028c CE-14I
-0. - . ,.

3.CE.TYP.l.3 Information Hidden

1. The representation of values within each of the data types.

2. The implementation of operations associated with a data type.

3.CE.TYP.2 Design Support

3.CE.TYP.2.1 Interface Assumptions

1. All scalar data can be characterized as either numeric, enumerated,

image, or character valued. All more complex data can be

characterized as a collection of values composed from values in these

four scalar classes. Data may also be characterized as having a value

from the union of the domains of two or more classes of data.

2. All data collections can be characterized as a set, a sequenced.

multiset, an indexed multiset, or a labelled setunion of some type of

data (either scalar or collection).

3.CE.TYP.2.2 Design Issues

1. Initially, storage allocation was included as a facility of this

module. It was concluded that this was not a proper concern and was

independent of data type specifications. The goal of this module is

to provide definitions of abstract type specifications while other

modules can better determine how to allocate physical storage to hold

entities with typed values. Considering storage allocation here leads

to confusion, particularly in considering dynamic allocation and the

issues of short-term versus long-term retention.

0028c CE-15

2. Some languages (e.g., Ada) provide generic type specifications (using

discriminants) that allow parameterized data types that are

instantiated as several specific types later. (An example is a

generic "square" parameterized by an integer that represents the

length of its sides; specific "square" types of fixed size can then be

defined as instances of the generic type.) Such facilities need not

be provided by this module in that translation of the language can,

using a generic type specification, transform a subsequent

instantiation into one of the specific type definitions of this module.

3.CE.TYP.2.3 Implementation/Configuration Information

I. Any abstract type referenced in a program written in a concrete

programming language must be implemented either in that same language

or in the language in which it is implemented. This may lead to

several implementations of each data type and will require care to

maintain consistency between these implementations. It may be useful

to support more control by each module client as to what

characteristics are needed (e.g., save space, fast insertion, fast

searching) and may lead to categories of data type implementation

(e.g., array versus list implementation of the sequence type).

2. Related to the preceding issue is the issue of whether the facilities

of this module should be purely functional (no hidden side effects) or

have internal storage, particularly for implementation of compound

types such as sets and sequences. This should be transparent to a

client of these facilities, but it may be desirable to allow client

control in some abstract way. The preferred implementation is

probably as macros in the source language of each client program.

3.CE.TYP.2.4 References: None.

0028c CE-16Ij

3.CE.LNG Abstract Language (LNG) Module

The abstract language module defines facilities of programming languages

for describing computations that can be evaluated by the virtual computer.

This specification describes the facilities of these languages in a generic

form as an informal guide to the semantics of a concrete language that

supports a given facility. Concrete specifications are provided separately

for any languages represented by this module. Any particular concrete

language may provide only a subset of the described facilities and restrict

the computational descriptions that are possible. Concrete languages

anticipated include, but are not restricted to, Lisp, C, and Ada.

3.CE.LNG.I Interface Definition

3.CE.LNG.l.I Exported Facilities

Data Manipulation

Name Parameters Constraints

++entity++ pl:[name);l
p2:[TYP typel;I
p3:[const value];Iopt
p4:tConst1;1_opt

defines an entity named by pl of type p2 with initial value p3 (undefined
if p3 is not input); if p3 and p4 are input, p4 indicates that pl
identifies a fixed value entity.

+entity+ pl:[TYP type];I
p2:[value];Iopt
p3:[entref];O_ret

creates a reference p3 to an entity of type pl with initial value p2

(undefined if p2 is not input).

+undefine+ pl:[entity];I
causes data item pl to have an undefined value relative to its type domain.

+undefined+ pl:[entity];I
p2:[boolean];Oret

determines whether data item pl has an undefined value relative to its type
domain.

0028c CE-17

+set+ pl:[entity];I
p2:[:base type:1;I
p3:[!base type:j;O ret

causes data item pi to be assigned value p2 , where pl is the same type as
p2; returns the value of p2 assigned to pl.

+swap+ pl:[entityl;I
p2:[!base typel];I
p3:[!base typej];O_ret

causes data item pl to be assigned value p2, where pl is the same type as

p2; returns the value of pl before the assignment.

(In addition to these functions, concrete language definitions will provide

definitions of concrete data types for the implementation of the Abstract Data
Type module.)

Sequence Control

Name Parameters Constraints

++program++ pl:[name];I

p2:!seq: of [param];I
p3 ::seq! of [name];I
p4::list: of (:version name:, :prog impl: pairs);I

defines a program named by pl which has parameters identified by p2 and
exception programs identified by p3.

++progimpl++ pl:[prog_name;I
p2 :['name];I
p3:[statement];I

defines statement p3 to be an implementation version named by p2 of program
pl.

+[prog name].[version name]+

pl'seq: of [paramvaluel;I
p2::seq: of [prog name];I

a (statement] which causes the execution of the version "[version name]" of
the program identified by "[prog name]" with parameter values pl; p2

identifies programs associated with the set of exception conditions that
the invoked program detects.

+[excp name]+

a [statement] which causes the execution of a program associated with the
"(excp name]" for the program containing this statement.

+seq+ pl::seq: of [statement];I

a [statement] which causes the sequence of statements pl to execute in
order.

00 28c CE-i.'

+cond+ pl:[guard defn];l opt
p2::seq! of [guarded stmt];I

a (statement] which defines a sequence of guarded statements p2 such that
execution of this statement causes the first true guarded statement to be

executed; pl defines guards that are referenced within p2.

+loop+ pl:[statement];l
a [statement] which defines a repetition context for the statement pl.

+loop cntl+ pl:[stateient];I
p2:[loopcntl];I

a (statement] which causes the execution of statement pl to set :loop cntl:

as indicated by p2 for the containing loop statement.

+skip+
a [statement] which indicates "no action".

Concurrency Control

Name Parameters Constraints

Static Processes

+-+P Process- pl:[prog name];l
p2:!seq! of [parameterl;lopt
p3:[period];I
p4:[pprocess sw];I
p5:[priorityT;I

defines a periodic process that executes program p3 with parameter sequence
pl with a periodicity of p2 at priority level p5 whenever process switch p4

is on.

++D Process++ pl:[prog name];I

p2:tseq! of [parameterl;lopt
p3:[event id];l
p4 :[priority];.

defines a demand process that exe.'-es program p3 with parameter sequence
pl at priority level p4 whenever event p2 occurs.

Dynamic Processes

+co stmt+ pl:!set: of [statement);l
a [statement] which causes concurrent activation as dynamic processes of
the set of statements pl.

0028c CE-19

+coexpr+ pl:[prog name];I

p2:[TYP seq] of [paramvalue];I
p3:[TYP seq] of [value];O

a [statement] which applies program pl concurrently to each of the

parameter sets of p2 producing results p3.

+fail+

a [statement] which cancels the containing dynamic process, so that no
output is produced.

+succeed+ pl:[value];O ret

a [statement] which cancels the containing dynamic process and returns

output pl.

Exclusion Regions

Exclusion regions provide a mechanism for preventing concurrent processes

from interfering with each other by executing conflicting statements
concurrently.

++Region++ pl:[namel;l
p2:[statement];I

defines statement p2 to be a region named by pl.

++Exclusion++ pl::set! of (tlist! of ([region name], [regionname]));I

defines a set pl of asymmetric exclusion relations between pairs of
regions, such that execution of the second region of a pair cannot begin
while the first is being executed.

Semaphores

Semaphores provide a mechanism for the synchronization of concurrent
processes.

++Semaphore++ pl:[namel;l

p2:[integer];l
p3:[semaphore];O ret

defines a semaphore p3 named by pl which has an initial value of p
2 .

+up+ pl:(semaphore];I

increments the semaphore pl.

+down+ pl:[semaphore];I

decrements the semaphore pl.

+pass+ pl:[semaphore];I

delays the caller while semapaore pl has a negative value.

0028c CE-20

3.CE.LNG.1.2 Local Dictionary

[constvalue] a [litvall or a fixed value [entity].

[entity] a [name] or [entref] which uniquely identifies a typed

entity.

[entref] a unique identifier for a dynamically defined typed

entity.

[expression]

[guard] a [TYP boolean] valued [expression].

[guarddefn] (to be defined)

[guardedstmt] (guard] [statement)

specifies that the [statement] can be executed if and
only if the associated [guard] is true.

[litval] a literal value of a form defined for a data type in

the Abstract Data Type module.

[loop_cntl] [enum: $term, $cont$].

:loop_cntl! an indicator for each loop statement that specifies

whether the statement should be terminated or repeated
at the completion of its current execution instance;
this is undefined at the start of each execution
instance and must be defined through the execution of a

loop control statement within the loop.

[name] a sequence of printable characters, the first of which
must be alphabetic and which includes no spaces.

[param]

[paramvalue]

!seq' a :TYP list: of elements which is viewed as ordered.

.set! a !TYP list: of elements which is viewed as unordered.

[value] [entity] or [litval]

OC28c CE-21

9

3.CE.LNG.1.3 Information Hidden

1.

3.CE.LNG.2 Design Support

3.CE.LNG.2.1 Interface Assumptions

1.

3.CE.LNG.2.2 Design Issues

i.

3.CE.LNG.2.3 Implementation/Configuration Information: None.

3.CE.LNG.2.4 References

1. D. L. Parnas. An Alternative Control Construct and Its Formal

Definition, IBM Technical Report TR FSD-81-0012.

2. D. L. Parnas, K. H. Britton, D. M. Weiss, P. C. Clements, Interface

Specifications for the SCR (A-7E) Extended Computer Module, NRL

Memorandum Report 4843, Naval Research Laboratory, Washington, D. C.,

March 29, 1983.

002qc CE-22

g

3.CE.CFG System Configuration (CFG) Module

The system configuration module provides facilities for the construction of

executable systems.

3.CE.CFG.1 Interface Definition

3.CE.CFG.l.l Exported Facilities4

Name Parameters Constraints

3.CE.CFG.l.2 Local Dictionary

3.CE.CFG.1.3 Information Hidden

1.

3.CE.CFG.2.2 Design Issues

1.

3.CE.CFG.2.3 Implementation/Configuration Information: None.

0028c CE-23

0

3.CE.CFG.2.4 References

1. B. W. Lampson, E. E. Schmidt. "Organizing Software in a Distributed

Environment" in Proceedings of the SIGPLAN '83 Symposium on

Programming Language Issues in Software Systems (ACM SIGPLAN Notices

18(6)) June 1983, 1-13.

0028c CE-24

3.UI.WIN Virtual Display Window (WIN) Module

The virtual display window module provides for the definition and use of

display "windows" for the concurrent presentation of data object information

on a CRT screen. A window is a rectangular space which presents a (partial)

view of a data object's external form to a user when the window is visible on

a CRT screen.

3.UI.WIN.I Interface Definition

3.UI.WIN.l.l Exported Facilities

Initialization Functions

Name Parameters Constraints

+displ_obj_map+ pl:(CRT crtid];I %unknown CRT%

p2:[FRM displ_id];I
p3:[frmwin id];O ret

defines a window p3 for presentation of display form p2 on CRT pl.

+displ_doc-map+ pl:[CRT crtid];I %unknown CRT%

p2:[EDF source id];I

p3:[edf_win_id; O_ret

defines a window p3 for presentation of source document p2 on CRT pl.

+gCRT+ pl:[win_idl;I %undefined window%
p2:[CRT crtid];O ret

returns the CRT p2 with which window pl is associated.

+g-displid+ pl:[frm win id];lI %undefined window%
p2:[FRM-displid];O_ret %not a form window%

returns the identifier p2 for the display form in window pl.

+g_sourceid+ pl:[edfwinid];I %undefined window%
p2:[EDF source id];O-ret %not a doc window%

returns the identifier p2 for the source document in window pl.

+break+ pl:[winid];I %undefined window%

deletes a window definition, preventing further reference.

0026c UI-1

0

Window Movement Functions

Name Parameters Constraints

+g/slocn+ pl:[win id];l %undefined window%

p2:[CRT-offset];O ret/Iopt
returns/sets the upper left corner of the window pl to coincide with the
CRT location p2 if input or the location of the CRT cursor otherwise.

+g/s_size+ pl:[win id];I %undefined window%
p2:(CRT-offset];Oret/I

returns/sets the size p2 of window p1 measured from its lower left corner.

+expand+ pl:[CRT crtid];I %unknown CRT%

causes the size of the window within whose visible boundaries the cursor

for CRT pl is positioned to increase in the direction of the edge(s)
nearest the current CRT cursor position.

+shrink+ p1:(CRT crtid];I %unknown CRT%

causes the size of the window within whose visible boundaries the cursor
for CRT pl is positioned to increase in the direction of the edge(s)

nearest the current CRT cursor position.

+display+ pl:[win id];I %undefined window%

makes window pl completely visible on its associated CRT screen, possibly
by covering previously visible portions of other windows (window size and

position on the CRT screen will be assigned arbitrarily if not previously

defined); the associated CRT cursor is moved to the upper left corner of pl.

+uncover+ pl:[CRT crtid];I %unknown CRT%

makes completely visible the window within whose visible boundaries the

cursor for CRT pl is positioned, possibly by covering previously visible
portions of other windows (window size and position on the CRT screen will

be as last defined); the position of the CRT cursor relative to the window

will not change.

Input/Output Functions

Name Parameters Constraints

+g-focus+ pl:[CRT crtid];I %unknown CRT%

p2:[win id];O opt
p3:[CRT-offsetj;Oopt
p4:[TYP boolean];O_ret

when p4 - TRUE, indicating the cursor for CRT pl is within the boundaries

of some window, p2 identifies the window in whose visible boundaries the

cursor is positioned and p3 gives the offset of the cursor focus relative

to the upper left corner of the image mapped into that window.

+await focuschg+ pl:[CRT crtid];I %unknown CRT%

delays the caller until the next occurrence of the cursor for CRT pl being
moved across a window boundary.

0026c UI-2

O~

+scroll+ pl:[CRT crtid];I %unknown CRT%
causes the window containing the CRT cursor to move over its contents a
distance determined by the window's width in the direction of the edge(s)

nearest the CRT cursor (limited such that the cursor does not move relative
to the window contents and remains visible in the window); if none of the

window's contents are hidden in the direction indicated, the window image
does not change.

3.UI.WIN.l.2 Local Dictionary

[edf-winidi a unique identifier for an active window mapped to
present the image of an EDF module defined document.

[frm winid] a unique identifier for an active window mapped to
present the image of an FRM module defined display form.

%undefined window% the specified [win id] does not correspond to a

currently defined window.

%unknown CRT% a specified CRT id does not correspond to a currently
active CRT.

[win_id] either an [frm win id] or an [edfwinid].

3.UI.WIN.l.3 Information Hidden

1. The spatial correspondence between virtual windows and the screen area

of an associated physical CRT. The data structures used to represent

the relationships between virtual windows associated with a single CRT

screen.

2. The relationship between an internal source image and the visible

image within the boundaries of a window at a given time. The

mechanisms for modifying the portion of an image that is visible due

to user-instigated, window-relative changes in focus.

3. The mechanisms for maintaining a window image as a valid reflection of

the current state of internal data in a timely manner.

0026c UL-3

3.UI.WIN.2 Design Support

3.UI.WIN.2.1 Interface Assumptions

1. Every CRT screen is associated with some active user. Windows are a

mechanism for logically structuring information displayed to a user so

that several items can be viewed independently. Each window is

defined as a (partial, movable) view of internal data, formatted into

a displayable image.

2. While a window is defined and has nonzero size, it displays a portion

of an image to which it has access. A window may be partially or

completely hidden by other windows on the CRT screen. This module can

determine which windows are visible at any time on the associated CRT

screen and can make any invisible or partially hidden window visible,

possibly by covering other visible windows. The relationship between

image and window guarantees that a "local focus" associated with the

image is always within the window.

3. The position and size of a window on the CRT screen can be changed.

Positional relationships between windows are recognized so that a

window which is overlapped by others will be visible only where not

overlapped.

4. The contents of a window are created as a displayable image from

internal data by another module which provides an access function for

obtaining a current image. If source data for an image is extensive,

only a portion of the image will be created, such that its relation to

the whole can be determined and other portions accessed as needed. If

a window is not large enough to display a complete image, different

areas of the image can be viewed by scrolling the available window

area over the image.

0026c UI-4

9

5. Given the absolute position of the user cursor on the CRT screen, it

is possible to determine a single window in which the cursor is

positioned and a relative position with respect to the image in that

window. This user cursor determines the "global focus" of the user.

It is possible to monitor the cursor position so that movement across

a window boundary can be reported at the time of occurrence.

3.UI.WIN.2.2 Design Issues

1. What functions are appropriate for window repositioning relative to a

display source image or relative to a CRT screen? What parameters are

appropriate for each such function? In most cases, it seems awkward

to have to specify explicit quantitative measures in modifying the

position, size, or visible contents of a window. This is particularly

true since it is desirable to support use of both bitmap and character

CRT screens. It is useful to provide functions that allow the caller

to either base such window requests on the current cursor position

where appropriate or simply to indicate the general result desired

(e.g., that the window should be made larger or smaller). In the

latter case, the effect on the window image should be significant but

small enough that a choice between too much and too little will not

generally be necessary.

2. How should the need for window image updates be determined? by the

window module or by another module that can monitor when changes to

the source object occur? It was decided that the window module should

be responsible for deciding when to update the contents of a window.

This avoids having to reveal to other modules exactly what images are

contained in each window. Other modules (e.g., FRM, EDF) may be

required to provide an access function that can indicate that a source

value has changed to minimize unnecessary window updates.

0026c Ui-5

3.UI.WIN.2.3 Implementation/Configuration Information

1. This module provides for automatic CRT screen updating as internal

data images associated with a window change. Display images are

obtained from the modules indicated in the mapping functions provided

for window creation.

2. As described in design issue 1, window scrolling and size modification

can be requested without specifying particular measures. Such

scrolling should cause a significant portion, but not all, of the

visible image to change. Window expansion or shrinking should cause a

window to become some proportion of its current size (say, 10 percent

more or less of the CRT screen area in the desired dimension). In

both cases, the goal should be to significantly modify the user's view

of the window's contents while maintaining the basic focus (in no case

should the position of the cursor relative to a source image change as

a result of a window repositioning operation). Major changes in focus

within a source object are handled by the module that creates the

image for window display.

3.UI.WIN.2.4 References: None.

0026c UI-6

3.UI.INP Input Handler (INP) Module

The input handler module defines virtual keyboards made up of logical keys

that can be associated with the context of a window defined for a CRT. Such

keyboard/window connections allow contextual interpretation and processing of

user inputs.

3.UI.INP.l Interface Definition

3.UI.INP.1.l Exported Facilities

Name Parameters Constraints

+-*keybd++ pl:[keybd];O_ret
defines a logical keyboard pl for which (key]s can be defined and
recognized on input.

+-+key++ pl:[keybd];l %%duplicate key%

p2:[key id];1 %%invalid pattern%%
p3:[keypattern;
p4:[TYP boolean;l opt

defines a logical key p2 on keyboard p1 that is equivalent to a key pattern
p3; if p4 = TRUEt, the case for tALPHAt keys is significant.

+-+dropchar++ pl:[keybd];I

p2 :(key];:
identifies a previously defined key p2 whose input on keyboard pl makes the
preceding character added to !input stream: inaccessible; preceding
unaccessed keys remain accessible.

++drop_line++ pl:[keybd];I
p2:[key];I

identifies a previously defined key p2 whose input on keyboard pl makes the

preceding :input line: in :input stream: inaccessible; preceding unaccessed
:input line:s remain accessible.

+-+line term++ pl:(keybd];I

p2:[key];l
identifies a previously defined key p2 to be a !line term: for keyboard pl.

+connect+ pl:[keybd];I

p2:[WIN win id];l
p3:[connection];O ret

creates an input connection p3 between keyboard pl and window p2 (which

determines an active CRT); if user input occurs while the user cursor is in
no window or in a window with which no keyboard is associated, that input
is rejected as invalid.

0026c Ui-7

p

+g inputstream+ pl:[connectionl;l
p2:[TYP charstr];O

returns the :input stream: p2 (with [CRT func keyls removed) for connection
pl .

+await_[key]+ pl:[connection];I

p2:[TYP boolean];I
delays the caller until the indicated [key] is at the beginning of the

{ihput stream: for connection pl; p2 indicates whether the [key] is removed
from the start of :input stream: allowing processing to continue or remains

there until removed by a call to +g line+; [CRT func_keyls are always
removed regardless of p2.

+ginput+ pl:[connection];I
p2:[TYP charstr];O ret

removes and returns the first :input line: p2 in the !input stream! for
connection pl.

+g_inputfocus+ pl:[connection];I

p2:[CRT offset];O ret
identifies the user's focus relative to the upper left corner of the

portion of the image mapped into the window of connection pl.

+queue-input+ pl:[connection];I

p2:[TYP boolean];I
if p2 = tTRUE$, interrupts :input stream: processing for connection pl; if
p2 = tFALSEt, resumes the processing of !input stream: in sequence.

+dumpinput+ pl:[connection];l

empties :input stream: of its current contents for connection pl without
further processing.

+hitkey+ pl:[connection];I
p2:[key];l

inserts key p2 at the end of the :input stream. for connection pl.

3.UI.INP.l.2 Local Dictionary

[compos_key] [TYP enum : tANY$, tALPHA$, tNUM$, $SPCHAR$, tFKEYt,
$CKEY$] where $ALPHA$ includes all upper and lower case

alphabetics and space, tNUM$ is 0 to 9, $SPCHAR$,
tFKEYt, and $CKEY$ are, respectively, all special
characters, function keys, and control keys defined on
a CRT keyboard, and tANY$ is any (keybdi key.

[connection] an association between a logical keyboard definition
and a window defined for a.a active CRT that determines
how user inputs from that CRT are processed when the

user cursor is within the boundaries of that window.

s, 2 UI-8

jcrt key] a [TYP charstrl representing a [CRT key] as follows:
alphanumerics: the standard symbol

(e.g., " , " ", "5")

special characters: the standard symbol
(e.g., "@", "=") with the
exception of "C ,)', .,
"+', "', and "'" which must

be preceded by . (e.g., "'*")
function keys: the name of the key bracketed by

" "(e.g., " F25")

control keys: the name of the key bracketed by
"$" (e.g., "$CD$")

%%duplicate key%% (1) a [key id] has been defined more than once; or (2)
two or more [key id]s have been defined for a logical

keyboard that map into the same sequence of [CRT key]s.

:input line! a (TYP seq] of [CRT key] (omitting [CRT func_keyls and

!line term!s) bracketed by !line terms.

!input stream: [TYP seq] of [CRT key] corresponding to the input
received for a [connection] and which has not been
accessed; determines the order in which associated
inputs are processed.

%%invalid pattern%'

[key] [TYP union] of ([keyid], [crtkey], [composkey]).

[keyid] a [TYP name] initiated and terminated with "$",
excluding the symbolic values of [crtkey] and

[symb key].

[key_pattern] one of: [key]
[key][key pattern]
([keypat-tern]+[keypattern]+

... +[keypattern])
*[key pattern]
* [integer],[integer][key pattern]

(embedded spaces are significant)

[keybd] a unique identifier for the description of a logical

keyboard from which input can be received.

:line term: an input key that marks the end of an !input line:; the

start of :input stream: is equivalent to a tline term:;
when no such key is defined for a keyboard, the end of
!input stream: serves as a :line term:.

0026c UI-9

3.UI.INP.l.3 Information Hidden

1. The mechanisms for detecting CRT keyboard inputs and mapping them into

logical keys defined as a context sensitive pattern.

2. The mechanisms and representation for storing and reporting of inputs

associated with an input connection.

3.UI.INP.2 Design Support

3.UI.INP.2.1 Interface Assumptions

1. Acceptable input is defined by logical keyboards composed of input

keys whose input can be detected in some context. Some keys have

meaning in the context of input handling (i.e., backspace, line

delete, and end of line) and are not detectable outside of input

handling. All other keys are externally detectable in some way. Any

input not representing a key on an appropriate logical keyboard is

considered an error to be reported to the source CRT.

2. Any CRT keyboard definition can be mapped into any logical keyboard

definition; however some keys on the logical keyboard may be

inaccessible to the CRT user if the CRT keyboard lacks a full keyset.

3. The interpretation of user inputs depends on a window with which those

inputs are associated. Such an association is indicated by the window

in which the user cursor is positioned when those inputs occur and the

definition of a logical keyboard associated with that window.

4. It is possible to define a window for use in displaying input errors.

An error need be visible only until subsequent input is received.

0026c Ui-10

3.UI.INP.2.2 Design Issues

1. How to recognize truncated inputs that are sufficiently long to be

distinguished from other possible inputs?

2. The echoing of input, being an output function, is not the

responsibility of this module. Since a function is provided for

access to the (unprocessed) !input stream: of each connection, another

module can map this data into a window for display.

3.UI.INP.2.3 Implementation/Configuratior Information

1. Reference 1 describes a conceptual model for a tool for the flexible

definition of logical input primitives as the composition of other

input primitives (in the context of a complete definition of an

"input-output tool"). This influenced the design of this module's

interface such that this module could be used to implement such a tool.

3.UI.INP.2.4 References

1. J. van den Bos, M. J. Plasmeijer, P. H. Hartel. "Input-Output Tools:

A Language Facility for Interactive and Real-Time Systems", IEEE

Transactions on Software Engineering, 9(3), May 1983, 247-259.

0026c UI-ll

3.UI.,)F Display Edit/Format (EDF) Module

The display edit/format module provides facilities for modifying text

source data and for formatting of this data for external presentation to a

user.

3.UI.EDF.l Interface Definition

3.UI.EDF.1.1 Exported Facilities

Initialization Functions

Name Parameters Constraints

+source+ pl:[source];Oret

creates a source object pl for editing and formatted output.

+opensource+ pl:[source];I

p2:[displtyp];I
p3:[source id];O ret

provides an identifier p3 for unique edit/formpt access to data source pl

where output will be in the form (character or image) indicated by p2;

positions the :displ origin: for p3 at the first :point focus: in pl.

+close-source+ pl:[source id];I
p2:[source];Oret

terminates an active edit/format access to source identified by pl and
returns the source in its current state.

Edit Functions

Name Parameters Constraints

+g/sextent+ pl:[sourceid];I

p2:[TYP integer];O ret/I
returns/sets the value of :displ extent:.

+shift-extent+ pl:(source id];I
p2:[TYP integer];I

repositions the :displ origin: of source p1 to a :point focus: positioned
at (approximately) p2 :displ extents from its current position.

* +mvfocus+ pl:[source idl;I

p2:[CRT offsetl;I
makes :focus: of source pl into a :point focus: and moves it to offset p2

from the current !displ origin: of pl.

0026c UI-12

+expandfocus+ pl:[source id];I
p2:[CRT offsetl;I

expands :focus! of source pl so that it has an endpoint at offset p2 from
the :displ origin: of pl.

+goffsetposn+ pl:[sourceid];l
p2:[TYP integer];Iopt

p3 :[char pos];I
p4:[positionJ;Oret

determines the position p4 within pl of a :point focus! before character
position p3 of a line which is p2 lines from the current start position of
!focus!.

+g/sedit-hold+ pl:[source id];I
p2:[TYP dispi__obj];O/I

returns/replaces the display object currently stored in the !edit hold:
area for source pl.

+insert+ pl:[source id];I

modifies the text contained in source pl such that the contents of tedit
hold: is inserted starting at the current !focus: location in pl; if

:focus: is not a !point focus:, the contents of !edit hold: and :focus! are
swapped.

+delete+ pl:[source idl;I
modifies source pl such that the characcer string identified by !focus! is
deleted, replacing the value of :edit hold: for pl.

+copy+ pl:[source__id];I
makes a copy of the text in source pl contained in :focus! and stores this

text as the new value of :edit hold: for pl.

+undo+ pl:[source id];l

reverses the effect of the preceding insert, delete, or copy function
applied to source pl.

+locate+ pl:[source id];1
p2:[patternl;l
p3:[TYP boolean];O ret

sets the position of !focus: to the position of the next occurrence

(following the current position of :focus:) of text pattern p2 in source
pl; p3 indicates whether the pattern was found.

+g__text+ pl:[source idl;l
p2:[TYP displ_obj];O ret

returns :displ extent: (character or image) lines of the formatted display
object form of the source text, such that the first line includes the start
of :focus: in source pl.

0026c UI-13

I I I It.

Format Functions

Name Parameters Constraints

+g/s-page_length+ pl:[sourceid];I
p2:[TYP integer];O ret/I

defines the number of lines of text to be grouped as a page for source pl;
a value of zero for p2 indicates that text will be continuous rather than
paged.

+s medium+ pl:[source id];I
p2:[TYP displ_medium];I

causes !focus: of source pl to have all defined attributes of display
medium p2 (undefined attributes of p2 do not affect the attributes of the
!focus: of pl).

+reset medium+ pl:[source id];I
resets the display medium attributes of the :focus: of source pi to be the
same as its enclosing context.

+g/smargins+ pl:[source id];I %fragmenting lines%

p2 :[line area];O ret/I
returns/defines the line area p2 of each line of text in the !focus: of
source pl.

+g/s align+ pl[source id];I %fragmenting lines%

p2[alignrnent];Oret/I
returns/defines the alignment of text lines in the !focus! of source pl.

+g/s justify+ pl:[source-id];I %fragmenting lines%
p2:[TYP boolean];Oret/I

returns/defines whether text lines in the !focus! of source pl should be
right justified using variable spacing (p2 = tTRUEt) or not (p2 - $FALSE$).

3.UI.EDF.I.2 Local Dictionary

[alignment) [TYP enum: tleft$, tcentert, trightt].

[charpos] a [TYP integer] identifying a [position] relative to
the start (if positive) or to the end (if negative) of
a line of text such that 0 is before the first
character of a line and -I is after the last character.

!displ e)-zent! the number of lines obtainable as a unit with one
access for display of a text source.

[displ_typi [enum: $chart, $image$].

0026c UI-14

p[

!edit-hold: an internal repository for temporary storage of edit
data for a source.

:focus: two [positionis (endpoints) within a data source that
define a current focus of interest as the data between

the [positionis.

[format id] a unique identifier for a set of format characteristics.

%fragmenting lines%

[line-area] a [TYP rec of (1) a [TYP integer] indicating the left

alignment of the area relative to the [line area] of
any preceding text lines and (2) a [TYP integer]

indicating the right alignment similarly.

[pattern] ?? [TYP charstr.pattern]

!point focus: a !focus! whose origin and end point are at the same

[position] in a data source.

[position] a point between two adjacent character locations within
a text data source; source start and end are two such
points.

[source id] a unique identifier characterizing an active
edit/format activity for a data source.

[unitid] an identifier for a character string delimited by two
[position]s.

3.UI.EDF.l.3 Information Hidden

1. The internal representation of textual data; transformations required

to modify this data and to display it under formatting guidelines.

0026c UI-15

I

3.UI.EDF.2 Design Support

3.UI.EDF.2.1 Interface Assumptions

1. All user visible data must be presented either in a symbolic or a

textual form. Symbolic forms are defined monolithically to correspond

to a single value of some user concept. A different value is

displayed by replacing the symbol by another symbol. A textual

representation of a concept's value differs in that value changes may

be indicated by a (partial) modification of the representation.

2. All textual data representation has two aspects: content and format.

Edit functions are required for modification of content. Formatting

functions allow definition of a mapping from the content to an

external representation for display.

3. Editing as defined here has two effects: modification of the value of

a textual data object and (potentially) modification of information

displayed to a user. These differ due to the transformations

determined by formatting. It must be possible to obtain a displayable

excerpt of a text object under some format on demand.

3.UI.EDF.2.2 Design Issues

1. How can internal data presentation templates (see the External Forms

module) be integrated into a text editing/formatting framework?

Clearly it would be useful to be able to include formatted data into

text documents and to allow integration of editing of that data and

free text. It is not clear, however, the best way to do this. It may

be necessary to merge this and the External Forms module.

0026c UI-16

'I

3.UI.EDF.2.3 Implementation/Configuration Information

1. Descriptions of integrated, interactive editing/formatting systems in

the references provides a model of the kind of facilities this module

should provide. The discussion of issues concerning document

formatting in section 3 of Reference 2 is particularly useful.

3.UI.EDF.2.4 References

1. N. Meyrowitz, A. van Dam. "Interactive Editing Systems: Part I", ACM

Computing Surveys 14(3), September 1982, 321-352.

2. R. Furuta, J. Scofield, A. Shaw. "Document Formatting Systems:

Survey, Concepts, and Issues", ACM Computing Surveys 14(3), September

1982, 417-472.

3. Proceedings of the ACM SIGPLAN SIGOA Symposium on Text Manipulation,

SIGPLAN Notices (ACM) 16(6), June 1981.

0026c UI-17

3.UI.F.M External Forms (FRM) Module

The external forms module provides facilities for construction and use of

external display representations of aggregate objeczs. These representations

can be parameterized to allow filling with variable data before display.

3.UI.FRM.I Interface Definition

3.UI.FRM.l.l Exported Facilities

Template Definition Functions

Name Parameters Constraints

++template++ pl:[TYP type];Iopt

p2:[templ_id];O_ret
defines a display template p2 which has an !item id: of type pl for data
access.

++format++ pl:[templ id];I

p2:[layout];I
defines the layout p2 of subtemplates of pl.

++subtemplate++ pl:[templ id];I %%inval tempi use%%
p2:[templ7id];Oret

defines a subtemplate p2 of template pl.

++label++ pl:[templ__id];I %/.inval templ use%%

p2:[TYP displobj];I
defines template pl to be a display object p2 tsed as a label.

++item id constr+ ol:[templid];I
p2:[TYP type];I
p3:[func id];I

defines a function p3 for template pl that provides an !item id: for
template pl subtemplates.

++value++ pl:[templ id];I %%inval templ use%"
p2:[ext__type];I

defines template pl as displaying values of type p2.

0026c Ul-18

I|

++value-source++ pl:[templ id];I Uinval templ use%'
p2:[func id];I %%Ialue conflict,%
p3 :[func-id];I

identifies function p2 as the source of data item values to be displayed in

template pl; p2 has one input parameter, the !item id! associated with pl
(I opt) for data item identification; function p3 formats an input value

(of the type associated with pl) which is returned as a [TYP displobji
value.

++value dest++ pl:[templid;l %%inval templ use/%

p2:[func id];I %%value conflict%%

p3:[funcid];I/
identifies function p3 that modifies internal data values of the type
associated with template pl; p3 has two input parameters, the :item id!
associated with pl (I_opt) for data item identification and the output of
p2 (I); function p2 accepts a [TYP charstr] representation of the data
value (input associated with pl) which is returned as a value of the type
associated with pl.

++valueconstr++ pl:[templ id]; %%value conflict%%

p2:[TYP type];I
p3:[func id];I

defines template pl to be a representation of a composite data -em of type
p2 constructed from the "value"s of pl's subtemplates using function p3; p3

must expect one correctly typed parameter for each subtemplate of pl that

has a value in the order of subtemplate definition.

++valuedecomp++ pl:[templ id];I %%value conflict%

p2:[ext type];I
p3:[func id];I

defines subtemplate pl to be a representation of a value of type p2

extractable by function p3 from the value of the template of which it is a
component.

++select++ pl:(templ id];l
p2:[func id];I

defines a function p2 which, given an !item id! for template pl, responds
to user "selection" of pl in a display form.

+-+action++ pl:[templ id];I
p2:[action name];I
p3:[INP keybd];I
p4:[INP key];l
p5:[func id];l

defines a generic action named by p2 associated with template pl which can

be referenced by key p4 in the definition of keyboard p3 to invoke function

p5 with an :item id! parameter if pl has one.

0026c Ul-19

Display Form Functions

Name Parameters Constraints

+opendispl+ pl:[templid];l
p2:[displ typel;l
p3:[!item id! type];I_opt
p4:[displid];O_ret

initiates use of a display form p4 represented by template pl and
associated with a data item identified by p3; p2 determines the form in
which p4 is to be displayed.

+close__displ+ pl:[displ_id];I
terminates use of display form pl. 0

+print+ pl:[displ__id];I
causes the display form pl to be printed on a hardcopy printer.

+update+ pl:[displ id];I
p2:[TYP charstr];I

causes the value function associated with a template at the !focus: of
display form pl to be invoked with the character string p2 converted to a

value of the appropriate type.

+select+ pl:[displid];I

causes the select function associated with a template at the !focus: of
display form pl to be invoked.

+inv [action name]+ pl:[displ id];l
causes the function associated with the named action and a template at the
!focus! of display form p1 to be invoked.

+gimage+ pl:[displ id];I
p2:[TYP displ_obj];O

obtains a display object p2 which is an external representation of display
form pl.

3.UI.FRM.l.2 Local Dictionary

[action-name] a [TYP charstr] uniquely representing a type of action
associated with a template.

(displ-id] a unique identifier for a display form which is an

instance of a defined template for which data values
can be determined.

[displtype] [TYP enum $chart, $-maget].

0026c Ul-20

[exttype] for a template with subtemplates, any [TYP type]; for
all other templates, any [TYP type] which has functions
+gextrep+ and +sextrep+ defined.

:focus: a position within a display form which is the current
focus of all user inputs.

[func id] a [CFG func name].

%%inval templ use%% an attempt to characterize a template in more than one
way as composed of subtemplates, as containing a label,
or as containing a data value.

!item id! a data value that uniquely identifies a data item
associated for display and update with a display frame.

[item id!_type] the [TYP type] of an !item id! for a particular
ftemplid].

[label' a [TYP charstr] which is used to label a field in a form

[layout] [TYP enum : $horiz$, $vert$] (the method of aligning
subtemplates within a template layout).

[templ__id] a unique identifier for a display template.

[updfunc] a [TYP func__id] and a [TYP seq] of [field id]s that
defines the actual parameters for the function; all
fields used as parameters must be in subordinate
templates of the template to which the function is
attached.

%%update conflict%% a template has been defined to have more than one

associated internal value updating function.

o%%value conflict%/. a template has been defined to have a value obtainable

in more than one way.

3.UI.FRJM.l.3 Information Hidden

1. How display templates are represented and manipulated.

2. How display forms are constructed from template definitions and

formatted internal data; when and how internal data is obtained and

formatted for use in a form.

0026c IJI-21

AD-A141 910 SOFTWARE ACQUISTON MANAGER'S WORKSTATION (SAM/WS) 2/l
SYSTEM DES GN TU SOFTWARE ARCH ITECTURE AND ENGINEERING
INC ARLINGTON VA G H CAMPBELL ET AL. 30 APR 84

UNCLASSIFIED SAE-DC-84-R 004 N00014-82-C-0428 F/G 9/2 NL

IIIIIIIIIEIIEE
EIIIIIIIIEEEEE
EIIIIIIEEEEEEE
EIIIE.EIEEEEEE
.EI.EIIEEEEEI
EEEEIIIIII

l .I2.2

Qj~I.25 IIII I I~l_1.6

MICROCOPY RESOLUTION TEST CHART
NAIJONAL BRLAuO OF STANDARO S 1, 4

3. How input values are correlated to a particular subtemplate area of a

display form and used to initiate an action or to modify internal data.

3.UI.FRM.2 Design Support

3.UI.FRM.2.1 Interface Assumptions

1. External display of information can be viewed as the display of either

a composite template constructed from subtemplates or a data template

containing a value formatted for display.

2. The subtemplates of a composite template can be layed out vertically

(in a column) or horizontally (in a row). Further composition of

composite templates supports general layout requirements.

3. A template which has no subtemplates can have either a typed data

value or a fixed label associated for display. A template which has

subtemplates that can be given values can be defined to have a value

constructed by some defined function from the sequence of its

subtemplate values.

4. A template can be selected by a user from the display to indicate the

invocation of some action. A function can be defined and associated

with the template which provides the meaning of the action intended by

the user.

5. Access to internal data values require the identification of functions

that can be used to obtain and modify those values. Since internal

data values can have arbitrary type, functions for the conversion

between these values and external representations ([TYP displ_obji on

output and [TYP charstr] on input) must also be identified.

0026c UI-22

6. Since many data entities could be displayed using a single template A

definition, functions invoked for data access or other actions must

receive an identifier for the particular entity being manipulated and

apply its action properly.

7. The definition of a template (and its associated subtemplates) is

sufficient to derive the external representation of a filled data form
to be displayed on physical media as long as the form (character or

image) of display objects expected by that media is known.

4A

3.UI.FRM.2.2 Design Issues

1. How to allow dynamically varying number of subtemplates for a

template? (e.g., for a user constructed diagram or data structure that
has a variable number of components)

2. How to determine when to get new values to fill a display form?

(e.g., whenever +update+ is called and periodically otherwise while a

form is in use)

3. Order of function execution when both a template and a subtemplate

have associated function attachments?

4. Whether/how to allow sharing of subtemplate definitions by independent

templates? (and avoid self reference)

5. How to manage value construction when more than one user Input is

needed to construct a valid value? (subtemplates that together

constitute a single internal value)

0026c UlI-23

=MI

3.UI.FRM.2.3 Implementation/Configuration Information

1. Reference 1 describes a system with many facilities similar to those

required for this module. That system is more limited in some ways

and more general in others but provides a good model of what this

design attempts.

3.UI.FRM.2.4 References

1. Richard E. Fikes, "Odyssey: A Knowledge-Based Assistant", Artificial

Intelligence 16 (3), July 1981, 331-361.

2. Mary Shaw, Ellen Borison, Michael Horowitz, Tom Lane, David Nichols,

Randy Pausch. "Descartes: A Programming-Language Approach to

Interactive Display Interfaces" in Proceedings of the SIGPLAN '83

Symposium on Programming Language Issues in Software Systems (ACM

SIGPLAN Notices 18(6)) June 27-29, 1983, 100-111.

0026c UI-24

3.AD.PKI Package Integration (PKI) Module

The package integration module allows the integration of separately

developed programs into an application system. Such programs must exist in a

form which is executable and have known interface requirements, both for

external invocation of embedded functions and for embedded invocation of

external functions.

3.AD.PKI.I Interface Definition

3.AD.PKI.I.l Exported Facilities

Name Parameters Constraints

++defn++ pl: [pkg id];I
p2:[CFG obj prog];I
p3:[TYP charistr];I

defines a package pl which represents an executable program p2 for which
source code is not accessible; p3 describes the general capabilities of the
package to aid in evaluating the applicability of the package.

+4-export++ pl:[pkg_id];I
p2:[func id];I
p3:[TYP ;eq] of'[func parm];I
p4:[TYP charstr];I

defines a function p2 invocable in package pl by other programs using

parameter types identified by p3; p4 describes the purpose of the function
sufficiently for correct use.

++import++- pl:[pkgid];I
p2:[ext func id];I
p3:[fun7 idl-i
p4:[.TYP seq] of (funcparm];I
p5:[TYP charstr];I

identifies a function p2 external to package pl that the package invokes
with the identifier p3 and parameters typed as specified by p4; p5

describes the expected function and assumptions about p2 sufficiently to
justify its selection or future replacement.

3.AD.PKI.1.2 Local Dictionary

[extfunc.idi a (LNG name] which distinguishes a [LNG function] that
is invocable.

0030c AD1.

[func.id] a [LNG name] attached to a function that is defined in
a :package! and is accessible for execution by other
programs.

[func parm] a [TYP lbi setun] of a !TYP type: that characterizes
the data type of a parameter of a function from the
perspective of a !package! and a [model which
determines how the parameter is accessed within the
defining function.

[mode] enumerated: IN, OUT, $I/0$, 0_ret, $INopt$,
$OUTopt$

:package! a set of programs which provide [LNG function]s for
invocation by other programs and which may invoke
[LNG function]. defined by other programs.

[pkg_id] a [LNG name] which distinguishes a :package: from the
set of all defined 'package:s.

3.AD.PKI.1.3 Information Hidden

1. Mechanisms required for integration of separately developed program

packages into an application system.

3.AD.PKI.2 Design Support

3.AD.PKI.2.1 Interface Assumptions

1. It is necessary to provide access to packages of programs that have

been developed separately. It is sufficient that an executable form

of a package be accessible if its external interfaces can be

adequately described.

0030c AD-2

2. A package must define (i.e., export) at least one function that can be

invoked externally to initiate the operation of programs in the

package. A package may define any number of such functions. Every p

function defined within a package has a unique name that can be used (.
to invoke it from outside the package. Each function has a fixed

number of parameters whose types can be specified using the data

typing terminology of the Abstract Data Type module.

3. Execution of a package's programs may depend on the availability of

functions defined external to the package. Each such function has a

unique name by which it is referenced within the package.

3.AD.PKI.2.2 Design Issues

1. Should exported or imported functions be allowed to have optional

parameters or variable parameter types that are used to characterize

overloaded functions? Now can exported functions be distinguished

after the translation from source into object code?

2. How can packages for which no source code is available be integrated

into a SAM/WS? What information is needed (e.g., a symbol table that

gives a program label-to-absolute address (relative to the start of

the package object code) mapping)?

3.AD.PKI.2.3 Implementation/Configuration Information: None.

3.AD.PKI.2.4 References: None.

0030c AD-3

3.AD.EXP Expert System (EXP) Module

The expert system module provides facilities for the specification and use

of application domain knowledge. Knowledge can be used to infer application

object characteristics based on known characteristics. Supporting facilities

allow the specification of domain metaknowledge that controls the use of

domain knowledge and the justification of inferences made from this

knowledge. An alternative use of domain knowledge is in the validation of
existing object characteristics with the intent of identifying inconsistencies

between known characteristics with respect to domain knowledge.

3.AD.EXP.1 Interface Definition

3.AD.EXP.i.1 Exported Facilities

Name Parameters Constraints

++KB++ pl:[OBJ domain];I
p2:[KBI;O ret

defines a !knowledge base! p2 in application domain pl.

++relation++ pl:[KB];I
p2:[inf mech];I
p3:[reli];I
p4:[reln id];O ret

adds a relation p4 described-by p3"to !knowledge base! pl that can be
processed with inference mechanism p2.

++g_reln match++ pl:[KB];I
p2:[reln_pattern];I
p3:[TYP set] of ([reln id]);O ret

identifies all relations p3 in :knowledge base: p1 whose definition matches
pattern p2.

++erase++ pl:[KB];I
p2:[reln id];I

removes relation p2 from !knowledge base! pl.

++descr++ pl:[KB];I
p2:[reln id];I
p3:(TYP Zharstr];I

provides a description p3 which explains the basis for relation p2 of
!knowledge base! pl in application domain terms.

0030c AD-4

+infer+ pl:[OBJ objiid];I
p2:[TYP set] of ([OBJ attr idl);I

.initiates an attempt to infer values for attributes p2 of object pl using
relations defined for objects in the domain of pl (a caller is delayed
until the attempt is completed).

+validate+ pl:[domain] ;I
p2:[OBJ objid];I
p3:[OIJ attr id];I
p4:[TYP set] of ([TYP ibl.setun] of (obj:[OBJ obj-id],
attr:[OBJ attr id]));O ret

attempts to identify any inconsistency between the value of attribute p3 of
object p2 and other attribute values of application domain pl, based on
relations defined in domain pl !knowledge bases; p4 indicates the set of
attributes whose values are inconsistent with that of p3.

+Justify+ pl:[OBJ objid];I
p2:[OBJ attr id];I
p3:[TYP seq] of ([TYP ibl setun] of
(type:EKB type], KB:[KB], reln:[reln id]));0_ret

identifies the relations p3 that were used to determine the value of
attribute p2 of object pl.

+g_reln+ pl:[KB];I
p2:[reln id];I
p3:[reln;O ret

returns the relation named by p2 in !knowledge base! pl.

+g_reln_descr+ pl:[KB];I
p2:[reln id];I
p3:[TYP charstr);Oret

provides a description of the basis for relation p2 of !knowledge base! pl
in application domain terms.

3.AD.EXP.I.2 Local Dictionary

[and.condi a [TYP seq] of ([condi).

[antec_.cond] a [TYP seq] of ([and-cond]) which defines alternative I
antecedent conditions, any one of which being true

activates the consequent condition of the containing
data relation.

[apply..actions] a [TYP seq] of [LNG func_.id] ?) that define a sequence
of actions to take when a relation is satisfied.

[cntlantec.cond] a [TYP seq] of ((cntl and cond]) which defines
alternative antecedent conditions, any one of which
being true activates the consequent condition of the
containing control relation.

0030c AD-5

[cntl-andcondi a [TYP seq] of ([cntiantecpred]).

[cutiantec_pred]

[cntl_conseq_cond] a [cntl_conseq_pred] which defines the consequent
condition of a control relation.

[cntlconseqpred]

(cntlreln] [TYP lblsetun] of (antec:[cntl antec cond],
conseq:(cntl conseqcond], action:[apply actions],
confid:[confCidence], expl:(explanation]).

[cond] ([OBJ attr id], [pred], [expr]).

[confidence]

[conseqcond] a [TYP seq] of ([TYP lblsetun] of (cond:[and cond],
prob:[symbprob])) which defines the consequent
conditions of a relation.

[data reln] [TYP lbi setun] of (antec:[antec cond], conseq:[conseq
cond], action:[apply actions], confid:[confidence],
expl:[explanation]).

[explanation] a [TYP charstr] which gives an extended explanation of
the rationale for a relation.

[expr]

!knowledge base! a set of relations that define logical relationships
between object attribute values (within the framework
of defined inference mechanisms).

[KB] a !knowledge base!.

[pred] [TYP enum : EQ, NE, SLT, GT, LE, GE].

[rein] [datareiln] or [cntlreln].

[reln_id] an identifier which uniquely identifies a relation
within a !knowledge base!.

(rein_pattern]

[symb_prob]

0030c AD-6

3.AD.EXP.1.3 Information Hidden

1. How application domain knowledge is represented as relations.

2. How knowledge is used to infer new data values from known values.

3.AD.EXP.2 Design Support

3.AD.EXP.2.1 Interface Assumptions

1. An application domain is a collection of knowledge that describes

relationships between entities within that domain. A knowledge base

is a collection of descriptions that characterize relationships that

are likely to be of interest together (e.g., relationships that

describe how to determine the value of all attributes of a particular

class of entity). Description knowledge (referred to as data

relations) deal with inferring new data values from known values.

Control knowledge (referred to as control relations) deal with

determining the order in which data relations are investigated to

satisfy specified goals. A knowledge base defines an agenda of

relations to apply to the satisfaction of a goal. Data relations

define inferences on object-associated data values; control relations

define modifications to the agenda within which they are defined.

0030c AD-7

I

. p. . . . -

2. Data relations define logical relationships between entities

characterized as abstract objects (via the abstract object module).

Abstract objects are organized into classes, each of whose members is

characterized by a collection of attributes that either have a typed

value or refer to other objects. Data relations define valid

relationships between attribute values. The abstract graph that

defines which attribute values can be inferred from others is referred

to as the attribute hierarchy. An attribute hierarchy constrains the

legal inference relationships (i.e., potential data dependencies)

between attributes such that a knowledge base is an instantiation of

an abstract attribute hierarchy and a database is a- 'nstantiation of

the knowledge bases comprising an application doma

3. Inference relations have an external representati nd an explanation

of meaning and context of use that is useful for j -iying how and

why particular data has been derived. These are necessary components

of the definition of a relation and are appropriate both for data
relations and control relations.

4. Just as inference relations can be used to derive unknown data values,

the consistency of known data values can be determined by analysis of

the validity of all relations that specify how those values are

logically related. It is sufficient to support the validation of a

single value against existing data values since a values in a

collection cannot become invalid except by the addition of new values.

0030c AD-8

3.AD.EXP.2.2 Design Issues

1. How should knowledge bases be organized to best support inference

focusing while maintaining independence of the organization of

knowledge from its use? An application system may encompass knowledge

of more than one application domain. A knowledge base for one domain

should be independent of all other domains and of the organization of

that knowledge. Within a domain, it should be possible to modify

knowledge without modifying the way inferencing is invoked. This

requires that knowledge bases be distinguished by domain but

relationships between knowledge bases within a domain are hidden.

2. In some cases, it may be desirable to investigate the implications of

assigning a particular value to an attribute before actually making

the assignment. One alternative considered was to provide a facility

for performing a "pre-justify" to determine what other attributes

might be affected if. a value were assigned. A better approach is to

assume the possibility of making a "conjecture" of a value that could

subsequently be either "confirmed" o.. "denied". This requires the

0030c AD-9

ability (in the abstract object module?) to establish a temporary

context for object definition and value assignment in support of

experimentation that can be easily discarded or made permanent, as

appropriate.

3.AD.KEXP.2.3 Implementation/Configuration Information

1. A side effect of inferring a data value should be the establishment of

a "data dependency" between the inferred value and the values from

which it was inferred. This allows rederivation of the inferred value

if, at some future time, one of the supporting values changes. It

also provides a trace, along with the relation support, for justifying

how and why a particular value was derived. The abstract object

module provides the facilities for recording data dependencies as well

as actual values.

3.AD.EXP.2.4 References

1. Knowledge Engineering System (KES), General Description Manual,

Software Architecture and Engineering, Inc., Arlington, VA 22209.

2. M. Stefik, et. al. "The Organization of Expert Systems: A Tutorial",

Artificial Intelligence 18,2 (March 1982), 135-173.

0030c AD-10

IOW

3.AD.OBJ Abstract Object (OBJ) Module

The abstract object module provides for the definition of classes of

objects, each element of which is characterized by the values of a set of

characteristic attributes. An attribute, in turn, may be a reference to

another object or it may be a typed data value. Relating one object to others

via an attribute allows contextual rather than named references to those

objects.

3.AD.OBJ.1 Interface Definition

3.AD.O&J.l.1 Exported Facilities

Name Parameters Constraints

++class++ pl: [domain] ;I
p2:[LNG name];I

defines a class of objects named by p2 in application domain pl.

++subset++ pl:[obj typ];I

p2:[LNG name];I
defines a class of objects named by p2 which is a subset of the objects in
class pl.

++attr value++ pl:[obj typ];I

p2:[LNG-name];l
p3:[TYP type];I

defines for objects in class pl an attribute p2 of type p3.

++attr.obj++ pl:[objtyp];I
p2:[LNG namel;l

p3:[objtyp];l
defines for objects in class pl an attribute p2 of type [object] in object

class p3.

++key++ pl:[obj_typ];l

p2:[TYP set] of [attr id];I
indicates that the values of attributes p2 uniquely characterize each

object in class pl (i.e., any value which is a composite of the values of
attributes in p2 uniquely identifies either zero or one (potential) member

in object class pl).

0030c AD-1

vU

++descr++ pl:[objtyp];I
p2:[attr id];I
p3:[VC charstr];I

provides a description of attribute p2 of object class pl which explains
the meaning and use of that attribute in the context of the application
system definition.

++view+-+ pl:[obj typ];I
p2:[view id];I
p3:[FRM templid];I

defines a view attribute p2 (with a [TYP displ_obJ] value) of object class
p1 to be derived from display template p3.

++-value rqst++ pl:[obj typ];I
p2:(attr id];I
p3:[FRM Zemplid];I

identifies a display template p3 appropriate for requesting the value of
attribute p2 of objects in class p1 from a user.

+classify+ pl:(obJ typ];l
p2: (object] ;I opt/O ret

defines an !object! p2 as a member of object class pl and of all classes of
which pl is a subclass; if p2 is not input, an !object! is created and
returned for later use.

+in class+ pl:[object];I
p2:[objtyp];I
p3:[VC boolean];O ret

p3 - $TRUE$ indicates that pl is a member of class p2.

+g_domain+ pl:[object];I
p2:[TYP set] of [domain];Oret

identifies the domains p2 of which object p1 is a member.

+g_class+ pl:[object];I
p2:[TYP set] of [obttyp];Oret

identifies the classes p2 of which object p1 is a member.

+forget+ pl:[object];I %obj referenced%
p2:[obj_typ];I opt

causes object pl to be forgotten; if p2 is input, only attributes
characteristic of class p2 are forgotten, making pl no longer a member of
that class.

0030c AD-12

+derive+ pl:[object];I
p2:(WIN win id];I
p3:!TYP list! of [attr_idJ;I_opt

causes the values of attributes of object pl to be derived through a
combination of logical inferences and user input prompting via window p2
(in that order); values are derived only for attributes which have unknown
value; if p3 is input, this is further restricted to those attributes
except for others needed in support of ones included in p3.

+rqst_[attr id]+ pl:[object];I
p2:[WIN win id];I

causes the value of the indicated attribute of object pl to be requested
from the user in window p2 (a caller is delayed until a response is
received).

+display+ pl:[object];I
p2:(view id];I
p3:[WIN w--in id];I

causes view p2 of object pl to be displayed in window p3 for appropriate
user action.

+add/remtattrid]+ pl:[object];I
p2:[attr val];O ret/I

adds/removes a value p2 of a attribute of tobject! pl.

+g/s_(attrid]+ pl:(object];I
p2:[TYP set] of [attr val];O ret/l

returns/sets the value(s) p2 of an attribute of tobject! pl.

+await [attr id]+ pl:[object];I
delays the caller until the value of the named attribute of object pl is
next set.

+select+ pl:[obj typ];I
p2:[TYP set] of ([TYP lbl setun] of
("[attr id]":[attrval)";I, opt

p3:[TYP set] of [object];Oret
identifies a set of objects p3 in class p1 with attribute values given by
p2; if p2 is not input, all objects in class pl are identified.

+intersect+ pl:[TYP set] of ([obj typ]);I
p2:[TYP set] of ([objectl);O

identifies a set of objects p2 which are members of all of the object
classes identified in pl.

0030c AD-13

3.AD.0BJ.1.2 Local Dictionary

[attr.id] a [LNG name] which distinguishes an !attributet of
objects in a given object class.

[attrval] [TYP ibl setun] of (val:#, srce:[value source],
confid:[confidence]), where # is the attribute's type.

!attribute! a discrete characteristic of an !object!.

[confidence] the confidence the source of a data value has in the
correctness of the value; a [TYP real] in the range
from -1.0 to 1.0, where -1.0 indicates impossibility,
1.0 indicates certainty, and 0.0 indicates a randomly
selected value.

[domain] a [LNG name] which characterizes an application domain
of object classes.

[obj typ] a [LNG name] which distinguishes a class of objects
within a [domain] which have the same attribute
structure.

[object] a representation of an !object!.

!object! a distinguishable entity in some application domain.

[user] an [object] which represents an application system user
(an object class).

(valuesource] a [TYP union] of ((user], [LNG prog name], [EXP reln
id], to indicate the source of a data value.

[view id] a [LNG name] for a description of an external
representation of a user view of an object in a given
object class.

3.AD.O&J.l.3 Information Hidden

i. The representation of objects and attributes.

0030c AD-14

3.AD.OBJ.2 Design Support

3.AD.0J.2.1 Interface Assumptions

1. An abstract object orientation provides a framework for defining

fixed, structural knowledge of an application domain and for

describing object instances that have known (but changable)

characteristics.

2. An object of an application domain can be characterized by attributes

that "completely" define all knowable information about that object.
Similar objects have the same attributes so that they can be viewed
abstractly as a "class" of objects. Some objects in a class may be

described in more detail by the specification of additional

attributes. Similar objects within a class have the same additional

attributes so that they can be viewed abstractly as a "subset" of the

containing class of objects.

3. A useful abstract concept is that of "relationships" between objects.

A relationship is equivalent to an attribute with the added

characteristic that the value of the attribute is an object in some

class of objects.

4. In addition to a value determined by the application domain, all

attributes have other information associated. This includes a

description that explains the meaning and use of the attribute and a

form in which values can be requested from users. In addition, object

classes have associated data display templates that define how

attributes should be displayed together to users.

0030c AD-15

3.AD.OBJ.2.2 Design Issues

1. How should relationships be represented? How should attributes of

relationships (as opposed to attributes of role participants) be

supported? Explicit facilities for defining relationships could be

provided but facilities are not necessary for both attributes and

relationships: either can be defined in terms of the other. Given a

foundation and perspective of abstract data typing for basic data

values, the attribute approach seems more natural. Using attributes,

a relationship can be represented in either of two ways: in the

simple case, one object is viewed as an attribute of another such that

a relationship exists from the first to the second (an inverse

relationship can be defined from the second to the first but no

explicit connection is made between these relationships); in the

general case, an object class can be defined whose members have one

attribute for each "role" in relationships of that type (the value of

which is some object in an appropriate class) and other attributes

that record information about the relationship (as opposed to about a

particular role object).

2. functionally defined attribute values are the responsibility of the

expert system module (inferences from known values are required).

This is also true for inheritance of (default) values as opposed to

inheritance of attribute slot definitions.

3. The existence of a "default" value for an attribute in some object

class involves application domain knowledge. In the simplest case, a

default is a relation concerning a single attribute that asserts that,

if no other value is known, a particular value may be assumed.

Traditionally, only this case is supported. By considering defaults

to be an expert system responsibility, more complex cases can be

0030c AD-16

supported, such as having the default value vary depending on other

attribute values. In addition, this makes it the responsibility of

the expert system as to when a default value should be assumed

insteading of assuming the value is unknown (undefined?) until a user

provides a value or one can be derived.

4. How to provide for temporary contexts for objects? What about changes

to objects in a context from outside the context (other users)?

5. provide for abstract operations/predicates on objects?

6. "copy" versus "reference" viewpoint on access to [objectis. (does

access return a copy of an object or a pointer to internal storage?

how to make shared access seem reasonable without revealing this)

7. How can the object view definition take advantage of views defined for

a containing object class? Should a facility be provided to allow a

view of an object class subset to be defined as an extension of a view

of the object class? While this is a useful capability, it seems

simpler to have it implemented by a "higher level" module.

Identification of a simple way to have this module do it could change

this decision.

8. What semantic concepts should an "object" module support? Three

general concepts are provided: classification (via the object class

concept), specialization (the inverse of generalization) (via the

subset concept), and aggregation (via the attribute concept).

3.AD.OBJ.2.3 Implementation/Configuration Information: None.

3.AD.OBJ.2.4 References

1. D. C. P. and J. M. Smith. "Conceptual Database Design".

0030c A.D-17

3.GE AS SAM General Expert Module (GE)

3.GE.PDA Project Domain Entry/Exit Module (PDA)

The PDA module activates a user session during which operations can be

carried out on a project domain through the actions of other application

software modules. During the activation (or signon) action the PDA module

verifies that the specified project domain exists and that the user is
4i

authorized to access it. If the user has so specified, a new project domain

is created. When requested, the PDA module deactivates the session,

precluding further operations on the project domain until a subsequent session

activation.

Associated with each project domain is a project user list that identifies

those users who are authorized to operate within the project domain. A

restricted subset of those users are empowered to modify the project user list

through the facilities of the PDA module.

3.GE.PDA.1 Function Definition

3.GE.PDA.2 Design Support

0112a GE-l

3.GE.CDF Context Definition Module (CDF) i

The CDF module sets the context of the user session by providing the

facilities for defining and referencing versions of products in the project

domain for which the session has been initiated. Following initiation of a

session or whenever a change of the context in which products are being

developed is required, the CDF module will define a new version set or select

one from existing sets associated with the current project domain.

When requested, the CDF module will display the status of products in the

project domain or, if a context has been established, in a version.

3.GE.CDF.1 Function Definition

3.GE.CDF.2 Design Support

0112s GE-2

3.GE.PDV Product Development Module (PDV)

The PDV module acts as a controller of the specialist modules of the

Acquisition Requirements Definition and Acquisition Package Development

modules. It does this by enabling a specialist module when requested. When

enabled, the specialist module's prior context is restored and it is allowed

to accept action requests. The PDV module allows no more than one specialist

to be active at any time. Thus, before the services of another specialist can

be obtained, the currently active specialist must be suspended. The PDV

module accomplishes this by blocking the action requests to the specialist

module being disabled and saving its context for a possible later reactivation.

The PDV module may also be requested to cancel an active specialist, in

which case it directs the specialist to delete the product it is working on

before disabling it.

The PDV module provides facilities for copying products from other version

sets and for displaying products from the current or other version sets.

3.GE.PDV.l Function Definition

3.GE.PDV.2 Design Support

0112a GE-3

3.GE.TUT Tutorial Assistance Module (TUT)

The TUT module displays tutorial information of two types: workstation

and acquisition process. The type of information to be displayed is requested

of the module and will be based on models of the workstation and the

acquisition process. The module supports traversal through multiple tutorial

display segments. Unless the request for a tutorial is specified as being in V

context, the module begins its traversal at the initial display segment and

allows the requestor to follow various paths through the entire tutorial.

When the tutorial has been requested to be in context, the module employs

the record of specialist activities to tailor the scope of tutorial

information available to the requestor to that which is pertinent to current

operations.

3.GE.TUT.I Function Definition

3.Gi.TUT.2 Design Support

0112s GE-4

3.GE.UTL Utility Services Module (UTL)

The UTL module provides facilities to archive the current project domain

and to edit and print the current product.

3.GE.UTL.1 Function Definition

3.GE.UTL.2 Design Support

0112s GE-5

3.AR AS Acquisition Requirements Definition (AR) Module

3.AR.PSS Applicable Policies and Standards Specialist (PSS) Module

The Applicable Policies and Standards specialist (PSS) module supports the

generation of an informal product consisting of a list of DoD, Navy, and

NAVSEA policies and standards which apply to the acquisition package being

developed. The specialist obtains information that characterizes the software

product and its acquisition constraints. The information is used to draw

inferences about policies and standards from rules that govern the software

acquisition process. The inferences determine the list of applicable policies

and standards.

When the list has been generated, the specialist module provides

facilities to obtain relevant portions of the list, display or print the list,

display justifications for the presence of particular elements on the list,f

display textual elaborations for particular elements of the list, as well as

facilities to read and write the list on auxiliary storage and to delete the
list.

3.AR.PSS.l Function Definition

3.AR.PSS.I.l Actions

The applicable policies and standards specialist module operates as a

process that performs actions when presented with a stimulus in the form of

new or modified data itcms. These actions may result in a change or

refinement to the applicable policies and standards object and/or a change to

the applicable policies and standards status.

Action Condition Data Item Response

+craps+ %null% [objid] %incomplete%
Establishes an applicable policies and standards object. The applicable
policies and standards object is identified by [obj id].

+gen aps+ %incomplete% [aps attr] %generated%

[obj id]
Refines the applicable policies and standards object identified by [obj_id]

Olils AR-I
9P

by generating the applicable policies and standards list. The specialist
module generates the initial applicable policies and standards list by
obtaining the attributes of the software product and its acquisition
constraints and then using these and other general attributes and rules to

infer the contents of the list.

+mod aps+ %generated% [edit object] (%incomplete% OR

[obj id] %generated%)
Refines the generated applicable policies and standards object identified
by [obj_idi by acquiring one or more data items to set or change
corresponding elements of the applicable policies and standards object. If

a data item changes the value of an attribute upon which the value of
another entry in the applicable policies and standards object depends, the
specialist module responds with %incomplete% to force regeneration of those
portions of the list that depend on the attribute whose value has changed.
When no data items are available, the applicable policies and standards
specialist module waits for one or more to be made available. Entire list

entries can be added or deleted by this action.

+get_list+ [receive-list] %generated%
[obj__id

Places an externally formatted instance of the list identified by [obj_id]
into a dynamically obtained storage area represented by [receive list]. If
the state of the list is %null%, it is first generated. If the state of
the list is %incomplete%, the generation of the list is completed before
this action continues.

+getspecs+ (receive-specs] %generated%
[obj_idl

Places an externally formatted instance of that portion of the list
identified by [obj_id] that contains references to military specifications
into a dynamically obtained storage area represented by [receivespecs].
If the state of the list is %null%, it is first generated. If the state of
the list is %incomplete%, the generation of the list is completed before
this action continues.

+getstds+ [receivestdsl %generated%

[obj_id]
Places an externally formatted instance of that portion of the list
identified by [obj_idi that contains references to military standards into
a dynamically obtained storage area represented by [receive stds]. If the

state of the list is %null%, it is first generated. if the state of the
list is %incomplete%, the generation of the list is completed before this

action continues.

+cancelaps+ NOT null% [obj_id] %null .
The applicable policies and standards object identified by [obj_id] is
deleted.

+printaps+ NOT %null% [obj_id]
An image of the applicable policies and standards object identified by [obj
id] is printed.

+display_aps+ NOT %null% [obj_id]

An image of the applicable policies and standards object identified by [obj
id] is displayed.

Olls AR-2

.. .I"aI I I I Iil l a a i - I

+displayjstfy+ NOT %null% [elementid]
[obj id]

The justification for the choice of the pertinent element on tne aps list
identified by [obj_id] is displayed.

display_elab+ NOT %null% [elementid]
[objid]

The textual elaboration, if available, of the pertinent element on the aps
list identified by [obj id] is displayed.

+write aps NOT %null% [objid]
A copy of the applicable policies and standards object identified by [obj
id] is transferred to the location in auxiliary storage addressed by the
identification of the object. If a prior copy of the object had been made,
it is deleted when the current copy is successfully completed.

+readaps+ [read id] %incomplete% or
(obj id] %generated%

The copy of the applicable policies and standards object at a specified

location in auxiliary storage is read by the applicable policies and
standards specialist module. The location from which the object is read
may be specified as either the current context or another context. In the
former case, the effect is to read the most recently saved version of the

applicable policies and standards object; in the latter case, the effect
is to read a saved.copy of an applicable policies and standards object from
another acquisition package. The object that is read becomes the
applicable policies and standards object of the current context identified

by [obj_id] replacing the applicable policies and standards object which
may have existed prior to the invocation of this action.

0111s AR-3

3.AR.PSS.l.2 Local Dictionary

Data item Definition

[apsattr the attributes describing software product characteristics

and acquisition constraints needed by the applicable

policies and standards specialist module to generate the

applicable policies and standards list

[editobject) a data item that conveys an editing action to be performed

on a product building block of the applicable policies and

standards object

[elementid] a data item that uniquely identifies an element of a

generated applicable policies and standards list

[objid] the identification of the object that represents the

product being produced through the facilities of this

specialist module; the identification is composed of [prod

type] and [packageid]

[package_id] the project identification and version identifica ion of

the acquisition package

[prodtype] the type of product being produced by this specialist

module; in this case the value of [prodtype] is

"applicable policies and standards"

[readid] the identification of the applicable policies and standards

object to be read from auxiliary storage

[receive-list] the address of a storage area into which has been placed an

*externally formatted instance of the list

[receivespecs] the address of a storage area into which has been placed an

externally formatted instance of the portion of the list

011is AR-4

containing the entries that reference military

specifications

[receive stds] the address of a storage area into which has been placed an

externally formatted instance of the portion of the list

containing the entries that reference military standards

%generated% the status of the applicable policies and standards object

has been set to "generated", i.e., the attributes necessary

for generating the list of the applicable policies and

standards have been acquired and the applicable policies

and standards list has been generated

%incomplete% the status of the applicable policies and standards object

has been set to "incomplete", i.e., the applicable policies

and standards object has been instantiated, but the

acquisition of those attributes necessary for generating

the list of the applicable policies and standards has not

been completed

%null% an instance of an applicable policies and standards object

for the current context does not exist

3.AR.PSS.l.3 Information Hidden

1. How the applicable policies and standards object is

represented and stored

2. The implementation of actions on the applicable

policies and standards object by the applicable policies

and standards specialist module

3. The structure and content of the attributes and rules

used by the specialist module to derive the list

Ollls AR-5

4. The inference mechanism used to derive the list

3.AR.PSS.2 Design Support

3.AR.PSS.2.2 Design Issues

3 .AR.PSS .2.3 Implementation/Configuration Information

3.AR.PSS.2.4 References

None.

01118 AR-6

3.AP AS Acquisition Package Development Modules

3.AP.DRS Contract Data Requirements List Specialist (DRS) Module

The CDRL specialist module supports the creation of a Contract Data

Requirements List for an acquisition package. The specialist module uses a

template to assemble a CDRL outline consisting of multiple formatted entries.

The template supplies both the initial structure and the initial content of

the CDRL outline. The content of each entry of the outline is provided from

literal text strings and from information derived from product

characteristics. In the latter case, the template guides the specialist

module in acquiring the information on product characteristics. The

specialist module acquires further information as it becomes-available to add,

delete, and modify the text used to form the CDRL. At any time following the

initial generation of the CDRL, the specialist module will generate a schedule

for submission of deliverables and insert the appropriate submission

information into each entry. If, after a schedule has been generated,

informatiot bearing on the schedule is modified, the specialist module

regenerates the schedule.

3.AP.DRS.l Function Definition

3.AP.DRS.l.l Actions

The CDRL specialist module operates as a process that performs actions

when presented with a stimulus in the form of new or modified data items.

These actions may result in a change or refinement to the CDRL object and/or a

change to the CDRL status.

Action Condition Data Item Response

+cr cdrl+ %null% [objid] %incompleteZ

AND NOT %sched%
Establishes a CDRL object by creating a CDRL instance appropriate to the
user's requirements. The new CDRL object is identified by [obj_id].

+gencdrl+ %incomplete% [cdrl char] %generated%
[obj id] AND NOT %sched%

Refines the CDR.L object identified by [obJ id) by generating the CDRL

OllOs AP-1

outline. The specialist module generates the initial CDRL outline by
assembling the product building blocks sequentially from the CDRL
template. When it encounters a product building block that requires
derivation of information from the product characteristics tne specialist
module acquires the needed data item and performs that function. The
product characteristics obtained by the specialist module govern the number
of CDRL entries in the generated outline.

+mod cdrl+ %generated% [edit object] (%incomplete% OR
[obj_id] %generated%) AND

(%sched% OR NOT %sched%)
Refines the generated CDRL object identified by [obj_id] by acquiring one
or more data items to set or change corresponding elements of the CDRL

object. if a data item changes the value of a product characteristic upon
which the value of another entry in the CDRL depends, the specialist module
responds with %incomplete% to force regeneration of those portions of the
outline that depend on the product characteristic whose value has changed.

When no data items are available, the CDRL specialist module waits for one
or more to be made available. Entire CDRL entries can be added or deleted
by this action.

+skd cdrl+ %generated% [precedence] %sched%
AND NOT %sched% [rel dell

(objiid]
The specialist module obtains the precedence relationships of the
deliverables, [precedence], and the end point of the activity relative to

the date of contract award that produces each deliverable, [rel dell. The
specialist module validates the information and uses it to complete the
CDRL object identified by fobjiid] by inserting submission dates into the
entries. This action of the specialist module sets and maintains page
headings, footings, and numbers for the cdrl object.

+cancel cdrl+ NOT %null% [obj id] %null%
The TDRL object identified by [objYd] is deleted.

+printcdrl+ NOT %null% [obj_id]

An image of the CDRL object identified by [objid] is printed.

+display__cdrl+ NOT %null% [obj id]
An image of the CDR.L object identified by [obj_id] is displayed.

+write cdrl+ NOT %null% (obj id]
A copy of the CDRL object identified by [obj_id] is transferred to the
location in auxiliary storage addressed by the identification of the
object. If a prior copy of the object had been made, it is deleted when
the current copy is successfully completed.

+read cdrl+ [read id] %incomplete% or[objid] %generated%

The copy of the CDRL object at a specified location in auxiliary storage is
read by the CDRL specialist module. The location from which the object is
read may be specified as either the current context or another context. In
the former case, the effect is to read the most recently saved version of

the CDRL object; in the latter case, the effect is to read a saved copy of
a CDRL object from another acquisition package. The object that is read

OllOs AP-2

becomes the CDRL object identified by [obj id] of the current context

replacing the CDRL object which may have existed prior to the invocation of
this action.

3.AP.DRS.l.2 CDRL Document Template

The template used by the CDRL specialist module to generate a CDRL outline

is described in this section. The CDRL template guides the specialist module

in generating a CDRL outline and in making modifications to the CDRL object in

response to editing actions. A template is composed of uniquely identified

product building blocks. Certain of the product building blocks contain

literal text strings and will appear in the generated outline as they are

shown in the template. Others contain data items bracketed with "@". These

data items are derived from product characteristics acquired by the specialist

module while generating the outline. The identifiers of blocks containing

derived information are denoted with a suffix of "@".

The template is derived from the skeleton CDRL specified in appendix C of

[SAM rqmt]. The outline generated by the specialist module will be identical

to that skeleton CDRL with the addition of the actual values for the data

derived from product characteristics. When the CDRL is generated from this

template, the two blocks labelled cdrl hdl@ and cdrl hd2@ are used to produce

a heading at the top of each page while the two blocks labelled cdrltr@ and

cdrl pg are used to produce a footing at the bottom of each page. Each page

of the CDRL will contain, in addition to the heading and footing, one or more

entries, each consisting of the blocks cdrl fl@ through cdrl flo. Each block

will be laid out in the entry in accordance with the format shown in appendix

C of [SAM rqmt]. The page numbers in cdrlpg will be maintained by +skd-cdrl+.

Block Id Block
cdrl hdl@ CONTRACT DATA REQUIREMENTS LIST

ATCH NBR @nbr@ TO EXHIBIT @exh@

CATEGORY @cat@

TO CONTRACT/PR @contractno@

1. 2. TITLE OR DESCRIPTION OF DATA 6. 10. 12.
SEQUENCE TECHNICAL FRQNCY DATE OF
NUMBER 3. SUBTITLE OFFICE IST SUBMISSI

4. 5. 7. 8. 9. 11. 13.
AUTHORITY (Data Item CONTRACT DD250-APP -INPUT-AS OF DATE OF SBSQ.

Number) REFERENCE REQ CODE TO IAC DATE SUBM/EVENT

0110s AP-3

Block Id Block
cdrl hd2f- SYSTEM/ITEM @~program name@

CONTRACTOR @contractor@

14.

DISTRIBUTION AND ADDRESSEES
(Addressees-Regular Copies/Repro Copies)

cdrl-f1@ 1.
- @seqno@-

cdrl-f2@ 2.

-@title@

cdrl-f3@ 3. @subtitle

cdrl f4@ 4.

@authority

cdrl-f5@ 5.

@contractref@

cdrl-f6@ 6.

@techoffice@

cdrl-f7@ 7.

@DD250@

cdrl f8@ 8.
@appcode@

cdrl-f9@ 9.
@iac@

cdrl-flO@ 10.
@frequency@

cdrl-fll@ 11.
@asofdate@

cdrl f12@ 12.
-@lstsub@

cdrl-f13@ 13.
@subsub@

cdrl-f14@ 14.

01108 &P-4

Block Id Block
cdrl-f15@ 15.

@total@

cdrl f 16 16. REMARKS

cdr2._tr@ PREPARED BY DATE APPROVED BY DATE

@prepby@ @prepdt@ @apprby@ @apprdt

cdrl pg PAGE OF PAGES

01108 AP-5

3.AP.DRS.l.3 Local Dictionary

Data item Definition

[cdrl char] the product characteristics needed by the CDRL specialist

module to generate the CDRL outline

[edit-object] a data item that conveys an editing action to be performed

on a product building block of the CDRL object

[obj id] the identification of the object that represents the

product being produced through the facilities of this

specialist module; the identification is composed of [prod

type] and [package_id]

[packageid] the project identification and version identification of

the acquisition package

[precedence] the required ordering of deliverables; i.e., the

predecessor/successor relationships among the deliverables

[prodtype] the type of product being produced by this specialist

module; in this case the value of [prodtype] is "CDRL"

[read id] the identification of the CDRL object to be read from

auxiliary storage

[rel dell the number of units of time following an event (e.g.,

contract award or delivery of a predecessor deliverable)

that a data item will be delivered

@lstsub@ date of first submission of a deliverable; obtained or

calculated by the specialist

@appcode@ CDRL field obtained by specialist

OllOs AP-6

'apprby@ name of person approving CDRL; obtained by specialist

@apprdt@ date of approval of CDRL; obtained by the specialist

@asofdate@ CDRL field obtained or calculated by the specialist

@authority@ CDRLL field obtained by specialist

@cat @ CDRL field obtained by specialist

@contractno@ cortract number for this acquisition; obtained by specialist

@contractor@ name of contractor to whom the CDRL is addressed; obtained

by specialist

.1 f

@contractref@ CDRL field obtained by specialist

@DD250@ CDRL field obtained by specialist

@dist@ CDRL field obtained by specialist

@exh@ CDRL field obtained by specialist

@frequency@ frequency of distribution of the data item; obtained by

specialist

@iac@ CDRL field obtained by specialist

@nbr@ CDRL field obtained by specialist

@prepby@ name of preparer of CDRL; obtained by specialist

@prepdt@ date of preparation of CDRL; obtained by specialist

@program name@ the name of the program for which the subject of this

software acquisition is being procured; obtained by

specialist

OllOs AP-7

@seqno@ data item sequence number maintained by the specialist

@subsuba date of subsequent submission of a deliverable; obtained or

calculated by the specialist

@subtitle@ CDRL field obtained by specialist

@techoffic@ CDRL field obtained by specialist

@title@ CDRL field obtained by specialist

@total@ total number of copies of the data item to be distributed;

calculated or obtained by specialist

%generated% the status of the CDRL object has been set to "generated",

i.e., the product characteristics necessary for generating

the outline of the CDRL have been acquired and the CDRL

outline has been generated

%incomplete% the status of the CDRL object has been set to "incomplete",

i.e., the CDRL object has been instantiated, but the

acquisition of those product characteristics necessary for

generating the outline of the CDRL has not been completed

%null% an instance of a CDRL object for the current context does

not exist

%sched% set on when a schedule has been generated by the specialist

module; set off when the CDRL object is established or when

a fild of any entry of the CDRL affecting the schedule has

been edited

OliOs AP-8

3.AP.DRS.i.4 Information Hidden

i. How the CDRL object is represented and stored.

2. The implementation of actions on the CDRL object by the CDRL

specialist module.

3.AP.DRS.2 Design Support

3.AP.DRS.2.1 Interface Assumptions

3.AP.DRS.2.2 Design Issues

3.AP.DRS.2.3 Implementation/Configuration Information

3.AP.DRS.2.4 References j
None.

OllOs AP-9

3.AP.RPS Request for Proposal Specialist (RPS) Module

The request for proposal specialist module supports the creation of a

request for proposal for an acquisition package. The specialist module uses a

template to assemble a request for proposal outline, The template supplies

both the initial structure and the initial content of the request for proposal

outline. The content of the outline is provided from literal text strings and

from information derived from product characteristics. In the latter case,

the template guides the specialist module in acquiring the information on

product characteristics. The specialist module acquires further information

as it becomes available to add, delete, and modify the text used to form the

request for proposal.

3.AP.RPS.I Function Definition

3.AP.RPS.l.I Actions

The request for proposal specialist module operates as a process that

performs actions when presented with a stimulus in the form of new or modified

data items. These actions may result in a change or refinement to the request

for proposal object and/or a change to the request for proposal status.

Action Condition Data Item Response

+crrfp+ %null% [obj_id) 'incomplete%
Establishes a request for proposal object. The request for proposal object
is identified by [obj_id].

+gen-rfp+ %incomplete% [rfpchar] %generated%
[obj_id]

Refines the request for proposal object identified by [obj id] by
generating the request for proposal outline. The specialist module
generates the initial request for proposal outline by assembling the
product building blocks sequentially from the request for proposal
template. When it encounters a product building block that requires
derivation of information from the product characteristics the specialist

module acquires the needed data item and performs that function.

+modrfp+ %generated% [edit object] %incomplete% or

[obj_id] %generated%
Refines the generated request for proposal object identified by [obj_id] by

acquiring one or more data items to set or change corresponding elements of
the requert for proposal object. If a data item changes the value of a

product characteristic, the specialist module responds with %incomplete% to

OllOs AP-10

force regeneration of those portions of the outline that depend on the
product characteristic whose value has changed. When no data items are
available, the request for proposal specialist module waits for one or more
to be made available.

+cancelrfp+ NOT %null%' [obj id] .null%
The request for proposal object identified by [objid] is deleted.

+print rfp+ NOT %null' [obj id]
An image of the request for proposal object identified by [obj_id] is
printed.

+display rfp+ NOT %null' [objid]
An image of the request for proposal object identified by [objid] is
displayed.

+write rfp+ NOT %null' [obj_id]

A copy of the request for proposal object identified by [obj id] is
transferred to the location in auxiliary storage addressed by the
identification of the object. If a prior copy of the object had been made,
it is deleted when the current copy is successfully completed.

+read rfp+ [read id] %incomplete% or
[objid] %generated'.

The copy of the request for proposal object at a specified location in
auxiliary storage is read by the request for proposal specialist module.
The location from which the object is read may be specified as either the
current context or another context. In the former case, the effect is to
read the most recently saved version of the request for proposal object;
in the latter case, the effect is to read a saved copy of a request for
proposal object from another acquisition package. The object that is read
becomes the request for proposal object identified by [objid] of the
current context replacing the request for proposal object which may have
existed prior to the invocation of this action.

OllOs AP-I

3.AP.RPS.l.2 Request For Proposal Document Template

The template used by the request for proposal specialist module to

generate a request for proposal outline is described in this section. The

request for proposal template guides the specialist module in generating a

request for proposal outline and in making modifications to the request for

proposal object in response to editing actions. A template is composed of

uniquely identified product building blocks. Certain of the product building

blocks contain literal text strings and will appear in the generated outline

as they are shown in the template. Others contain data items bracketed with

"" These data items are derived from product characteristics acquired by

the specialist module while generating the outline. The identifiers of blocks

containing derived information are denoted with a suffix of "

The template is derived from the skeleton request for proposal specified

in appendix A of [SAM rqmt]. The outline generated by the specialist module

will be identical to that skeleton request for proposal with the addition of

the actual values for the data derived from product characteristics.

Block Id Block
rfp__cl@ STANDARD FORM 33

1. CONTRACT NO. @contractno@

rfp_pid@ 2. SOLICITATION NO. @procurement id@ ADVERTISED (IFB)
NEGOTIATED (RFP)

rfp_date@ 3. CERTIFIED FOR NATIONAL DEFENSE UNDER BDSA REG 2 AND OR DMS REG
1 RATING

5. DATE ISSUED @rfp date@

--- - - - -------------- ---
rfp_pr@ 6. REQUISITION PURCHASE REQUEST NO. @purch rqst@

rfp_isu@ 7. ISSUED BY Code @dodaad@
@issuer@
BUYER/SYMBOL @buyer name@
PHONE: @buyer phone@

rfp_ofr@ 8. ADDRESS OFFER TO

@offer to@

OllOs AP-12

.4fto . W-. 6-

Block Id Block
rfpinst@ 9. Sealed offers in original and 4copies A copies for furnisning

the supplies or services in the schedule will be received at
the place specified in block 8, or if handcarried, in the
depository located in @deposit@ until @deadline time@ local
time @deadline date@.
If this is an advertised solicitation, offers will be publicly

opened at that time.
CAUTION-LATE OFFERS: See pars. 7 and 8 of Solicitation
Instructions and Conditions.
All offers subject to the following:

1. The Solicitation Instructions and Conditions, SF-33A, 3sf33a
edition@ edition, which is attached or incorporated herein

by reference.
2. The General Provisions, SF 32, @sf32 edition@ edition, which

is attached or incorporated herein by reference.
3. The Schedule included herein and/or attached hereto.

4. Such other provisions, representations, certifications, and
specifications as are attached to or incorporated herein by
reference. (Attachments are listed in the Table of Contents)

FOR INFORMATION CALL @information@ (no collect calls)

rfptl

TABLE OF CONTENTS
THE FOLLOWING CHECKED SECTIONS ARE CONTAINED IN THE CONTRACT

(X) SEC PAGE
PART I - GENERAL INSTRUCTIONS

A Cover Sheet
B Contract Form and Representations, Certifications,

and Other Statements of Offeror
C Instructions, Conditions, and Notices to Offerors

D Evaluation Factors for Award
PART II - THE SCHEDULE

E Supplies/Services and Prices
F Description/Specifications

G Packaging and Marking
H Deliveries or Performance

I Inspection and Acceptance

J Special Provisions
K Contract Administration Data

PART III - GENERAL PROVISIONS
L General Provisions

PART IV - LIST OF DOCUMENTS AND ATTACHMENTS

M List of Documents, Exhibits, and Other Attachments

OllOs AP-13

Block Id Block
rfp_c2@ PART I - GENERAL INSTRUCTIONS khontractno@

rfp_t2 SECTION A

rfp__t3 SECTION B - CONTRACT FORM AND REPRESENTATIONS, CERTIFICATION, AND
OTHER STATEMENTS OF OFFEROR

rfp_t4 SECTION C - INSTRUCTIONS, CONDITIONS, AND NOTICES TO OFFERORS

rfp_t5 SECTION D - EVALUATION FACTORS FOR AWARD

rfp_c3@ PART II - THE SCHEDULE @contractno@

rfp__t6 SECTION E - SUPPLIES/SERVICES AND PRICES
Unit Total

Item Supplies/Services Qty Unit Price Amount

rfp_t7 SECTION F - DESCRIPTION/SPECIFICATIONS

rfpt8 SECTION G - PACKAGING AND MARKING

rf p_t9 SECTION H - DELIVERABLES OR PERFORMANCE

rfp_tlO SECTION I - INSPECTION AND ACCEPTANCE

rfp_tll SECTION J - SPECIAL PROVISIONS

rfp_tl2 SECTION K - CONTRACT ADMINISTRATION DATA

rfp_c4@ PART III - GENERAL PROVISIONS @contractno@

rfp_tl3 SECTION L - GENERAL PROVISIONS
The clauses checked below, except those marked with an asterisk

(*) are hereby incorporated by reference with the same force and
effect as if set forth in full. Those clauses marked with an
asterisk are attached hereto in full text.

All clauses hereby incorporated by reference may be found in
Section VII of the Defense Acquisition Regulations (DAR). Copies of
the DAR may be purchased from the Superintendent of Documents, U.S.
Government Printing Office, Washington, D.C. 20402.

The clauses listed below and preceded by an "x" in the block to
the left are applicable to this contract. Clauses preceded by "N/A'
are not applicable.
(X) Title Date Reference

rfp_cls@ @clauses@

rfp_cS@ @contractno@
PART IV - LIST OF DOCUMENTS, EXHIBITS, AND OTHER ATTACHMENTS

--

OllOs AP-14

Block Id Block
rfpt14 SECTION M - LIST OF DOCUMENTS, EXHIBITS, AND OTHER ATTACHMENTS

This solicitation package consists of the following checked material:
() 3 Copies DD Form 1707, Information to Offerors, 1 February 1976
() 3 Copies Invitation for Bids/Request for Proposal including

Standard Form 33, Solications Offer and Award, March 1977 and
Standard Form 33A, Solicitation, Instructions and Conditions,

July 1977
() 3 Copies List of Clauses Incorporated by Reference, Fixed Price

Supply Contracts - Pages thru
() 3 Copies Additional General Provisions Fixed Price Supply

Contracts - Pages thru
() 3 Copies List of Clauses Incorporated by Reference, Fixed Price

Research and Development Contracts - Pages thru

() 3 Copies Additional General Provisions Fixed Price Research and
Development Contracts - Pages thru

() 3 Copies of Clauses Incorporated by Reference, Fixed Price
Services Contracts - Pages _ thru

C) 3 Copies Additional General Provisions Fixed Price Services
Contracts - Pages thru

() 3 Copies List of Clauses Incorporated by Reference, Cost
Reimbursement Contracts - Pages thru

3 Copies Additional General 'rovisions Cost Reimbursement
Contracts - Pages thru

C) 3 Copies List of Clauses Incorporated by Reference, Cost
Reimbursement Supply Contracts - Pages _ thru

() 3 Copies Additional General Provisions Cost Reimbursement
Supply Contracts - Pages _ thru

C) 3 Copies List of Clauses Incorporated by Reference, Cost

Services Contracts - Pages thru
() 3 Copies Additional General Provisions Cost Services Contracts

- Pages thru
() 3 Copies List of Clauses Incorporated by Reference, Time and

Material and Labor Hour Contracts - Pages thru
C) 3 Copies Additional General Provisions Time and Material and

Labor Hour Contracts - Pages thru
C) 3 Copies DD Form 1423 Contract Data Requirements List,

consisting of the following checked Exhibits:

() Exhibit A, dated ; () Exhibit B, dated _

() Exhibit C, dated ; () Exhibit D, dated -- ;
() Exhibit E, dated ; C) Exhibit F, dated ;

() Exhibit G, dated ; () Exhibit H, dated ;
() Exhibit J, dated ; C) Exhibit K, dated ;
C) Exhibit L, dated ; C) Exhibit M, dated _

() Exhibit N, dated ; C) Exhibit P, dated ;
() Exhibit Q, dated ; C) Exhibit R, dated -- ;
() Exhibit S, dated ; () Exhibit T, dated ;

() Exhibit U, dated ; () Exhibit V, dated ;
S) Exhibit W, dated ; C) Exhibit X, dated ;
() Exhibit Y, dated ; () Exhibit Z, dated ;

() 3 Copies DD Form 1664, Data Item Description(s), dated 1 June
1968

() 3 Copies DD Form 254, Contract Security Classification
Specification, dated

OliOs AP-15

IA

Block Id Block
rfp_tU4 () 3 Copies DD Form 633, Contract Pricing Proposal
cont'd () 3 Copies DD 1660, Management Systems Summary List,

dated
() 3 Copies DD Form 1564, Pre-Award Patent Rights Documentation

() 1 Copy Specification

(UNCLASSIFIED), dated
) 1 Copy Specification

(UNCLASSIFIED), dated

rfpsow@ C) I Copy Statement of Work For @program name@ Dated @sow date@

3.AP.RPS.I.3 Local Dictionary

Data item Definition

[edit object] a data item that conveys an editing action to be performed

on a product building block of the request for proposal

object

[obj_id] the identification of the object that represents the

product being produced through the facilities of this

specialist module; the identification.is composed of (prod

type] and [package_id]

(packageid] the project identification and version identification of

the acquisition package

OllOs AP-16

[prodtype] the type of product being produced by this specialist

module; in this case the value of [prodtype] is "request

for proposal"

[readid] the identification of the request for proposal object to be

read from auxiliary storage

[rfp_char] the product characteristics needed by the request for

proposal specialist module to generate the request for

proposal outline

@#copies@ number of copies of proposal

@buyer name@ buyer/symbol

@buyer phone@ telephone number of buyer

@clauses@ the set of clauses that are applicable to this contract

that will be contained in Section L of the RFP

@contractno@ contract number for this acquisition

@deadline date@ date by which proposal must be received

@deadline time@ local time of day by which proposal must be received

@deposit@ location of depositary to which proposal may be handcarried

@dodaad@ code

@information@ a telephone number that can be used by respondants to

obtain information concerning the solicitation

@issuer@ issuer of rfp

OllOs AP-17

@offer to@ address to which offer is to be sent

@procurement id@ solicitation number

@program name@ the name of the program for which the subject of this

software acquisition is being procured

@purch rqst@ requisition purchase request number

@rfp date@ the publication date of the request for proposal

@sow date@ the publication date of the statement of work

@sf32 edition@ the edition identification of the SF-32 that is attached or

incorporated with this RFP

@sf33a edition@ the edition identification of the SF-33A that is attached

or incorporated with this RFP

%generated% the status of the request for proposal object has been set

to "generated", i.e., the product characteristics necessary

for generating the outline of the request for proposal have

been acquired and the request for proposal outline has been

generated

%incomplete% the status of the request for proposal object has been set

to "incomplete", i.e., the request for proposal object has

been instantiated, but the acquisition of those product

characteristics necessary for generating the outline of the

request for proposal has not been compl~ted

%null% an instance of a request for proposal object for the

current context does not exist

01109 AP-18

3.AP.RPS.1.4 Information Hidden

1. How the request for proposal object is represented and stored.

2. The implementation of actions on the request for proposal object by

the request for proposal specialist module.

3.AP.RPS.2 Design Support

3.AP.RPS.2.1 Interface Assumptions

3.AP.RPS.2.2 Design Issues

3.AP.RPS.2.3 Implementation/Configuration Information

3.AP.RPS.2.4 References

None

OllOs AP-19

3.AP.SPS Specification Specialist (SPS) Module

The specification specialist module supports the creation of one of four

types of system specification for an acquisition package: a Type A System

Specification, a Program Performance Specification (PPS), a Functional

Operation Design (FOD) Document, or a System Operational Design (SOD)

Document. The specialist module uses a template to assemble a specification

outline of the appropriate type. The template supplies both the initial

structure and the initial content of the specification outline. The content

of the outline is provided from literal text strings and from information

derived from product characteristics. In the latter case, the template guides

the specialist module in acquiring the information on product

characteristics. The specialist module acquires further information as it

becomes available to add, delete, and modify the text used to form the

specification.

3.AP.SPS.I Function Definition

3.AP.SPS.l.l Actions

The specification specialist module operates as a process that performs

actions when presented with a stimulus in the form of new or modified data

items. These actions may result in a change or refinement to the

specification object and/or a change to the specification status.

Action Condition Data Item Response

+crspec+ %null% [objid] %incomplete%
Establishes a specification object by creating a specification of a type
appropriate to the user's requirements. The specification object is
identified by [objid].

+genspec+ %incomplete% [spec__char] %generated%
[spectype]
[obj id]

Refines the specification object identified by [obj_id] by generating the

specification outline. The specialist module generates the initial
specification outline by assembling the product building blocks
sequentially from the appropriate specification template. The appropriate
template is determined by [spec type]. When it encounters a product

building block that requires derivation of information from the product
characteristics the specialist module acquires tne needed data item and
performs that function.

OllOs AP-20

+modspec+ .generated% [editobject] "incomplete. or

[obj_id] 'generated.,

Refines the generated specification object identifies by [obj id] by
acquiring one or more data items to set or change corresponding elements of

the specification object. If a data item changes the value of a product

characteristic, the specialist module responds with '.incomplete% to force

regeneration of those portions of the outline that depend on the product

characteristic wnose value has changed. When no data items are available,

the specification specialist module waits for one or more to be made

available.

+cancel spec+ NOT %null% [obj id] %null.',.

The specification object identified by [objid] is deleted.

+print s'ec+ NOT '.null% [obj id]

An image of the specification object identified by [objid] is printed.

+display_spec+ NOT %null% (obj id]

An image of the specification object identified by [objid] is displayed.

+write spec+ NOT %null% iobj id]

A copy of the specification object identified by [obj id] is transferred to

the location in auxiliary storage addressed by the identification of the

object. If a prior copy of the object had been made, it is deleted when

the current copy is successfully completed.

+read spec+ (read id] %incomplete% or

(obj id] %generated%

The copy of the specification object at a specified location in auxiliary

storage is read by the specification specialist module. The location from

which the object is read may be specified as either the current context or

another context. In the former case, the effect is to read the most

recently saved version of the specification object; in the latter case,

the effect is to read a saved copy of a specification object from another

acquisition package. The object that is read becomes the specification

object identified by [obj id] of the current context replacing the

specification object which may have existed prior to the invocation of this

action.

OllOs AP-21

.............J.

3.AP.SPS.1.2 Specification Document Templates

Each of the templates used by the specification specialist module to

generate a specification outline are described in this section. The

specialist module chooses one template for an acquisition package based on the

value of the product characteristic [spec type].

-4

The specification template guides the specialist module in generating a

specification outline and in making modifications to the specification object

in response to editing actions. A template is composed of uniquely identified

product building blocks. Certain of the product building blocks contain

literal text strings and will appear in the generated outline as they are

shown in the template. Others contain data items bracketed with "@". These

data items are derived from product characteristics acquired by the specialist

module while generating the outline. The identifiers of blocks containing

derived information are denoted with a suffix of "@".

3.AP.SPS.l.2.1 Type A Specification Template

The Type A Specification template is chosen by the specification

specialist module when [spec type]=typea. The template is derived from the

skeleton Type A system specification specified in appendix E of [SAM rqmtl.

The outline generated by the specialist module will be identical to that

skeleton specification with the addition of the actual values for the data

derived from product characteristics.

Block Id Block

aspc_date@ dspec , itel

aspc_ti SYSTEM SPECIFICATION
FOR

aspc_nml3 3system name@

aspct2 Prepared by

aspc_prepd lpreparera

Oli0s AP-22

~low

Block Id Block
TABLE OF CONTENTS

Section Page
1. Scope ..
2. Applicable Documents
2.1 Military Specifications
2.2 Military Standards
2.3 Other Publications

3. Requirements ...
3.1 System Definition ..
3.2 Characteristics ..
3.3 Design and Construction

aspc_t3 3.4 Documentation ..
3.5 Logistics ..
3.6 Personnel and Training
3.7 Functional Area Characteristics
3.8 Precedence of Requirements
4. Quality Assurance Provisions

4.1 General ..
4.2 Quality Conformance Inspections

5. Preparation for Delivery
6. Notes ..

aspchd@ 4spec heading@

aspct4 SYSTEM SPECIFICATION
FOR

@system name@

aspc_nm2@ 1. Scope
This specification establishes the performance, design,

development, and test requirements for the @system name@.

2. Applicable Documents
aspc_t5 The following documents of the issue in effect on this date of

solicitation form a part of this specification to the extent
specified herein.

aspc_t6 2.1 Military Specifications

aspc spcs@ @mil specs@

aspc_t7 2.2 Military Standards

aspcstds@ @mil standards@

aspc t8 2.3 Other Publications

aspc_t9 3. Requirements

aspc_tlO 3.1 System Definition

aspctll 3.1.1 Item Diagrams

aspc_t12 3.1.2 Interface Definition

0110s AP-23

Block Id Block

aspc_tl3 3.1.3 Major Component List

aspc_t14 3.1.4 Government Furnished Property List

aspc_tl5 3.1.5 Government Loaned Property List

aspc_t16 3.2 Characteristics

aspctl7 3.2.1 Performance ,

aspc_t18 3.2.2 Reliability

aspc tl9 3.2.3 Maintainability

aspc_t20 3.2.4 Transportability

aspc_t21 3.3 Design and Construction

aspc_t22 3.3.1 Processes and Parts

aspc_t23 3.3.2 Product Marking

aspct24 3.3.3 Workmanship

aspc_t25 3.3.4 Interchangeability

aspc t26 3.3.5 Safety

aspct27 3.3.6 Human Performance/Human Engineering

aspct28 3.4 Documentation

aspc_t29 3.5 Logistics

aspct30 3.5.1 Maintenance

aspct31 3.5.2 Facilities and Facility Equipment

aspc_t32 3.6 Personnel and Training

aspc_t33 3.6.1 Personnel

aspct34 3.6.2 Training

aspc_t35 3.7 Functional Area Characteristics

aspct36 3.8 Precedence of Requirements

aspc_t37 4. Quality Assurance Provisions

aspct38 4.1 General

aspc_t39 4.1.1 Responsibility for Tests

OllOs AP-24

Block Id Block

aspct40 4.1.2 Special Tests and Examinations

aspc t41 4.2 Quality Conformance Insptections

aspct42 5. Preparation for Delivery

aspc t43 6. Notes

OA

OIliOs AP- 25

3.AP.SPS.l.2.2 PPS Template

The PPS template is chosen by the specification specialist module
when [spec typelpps. -he template is derived from the skeleton Program
Performance Specification specified in appendix F of [SAM rqmtl. The outline
generated by the specialist module will be identical to that skeleton
specification with the addition of the actual values for the data derived from
product, characteristics.

Block ID Block
pspc-date@ @spec d~ate@~

pspc-ti PROGRAM PERFORMANCE 1
SPECIFICATION

FOR 1

pspc-nmlV @program name@

pspc-t2 Prepared by

pspc_prep 4 @preparer@

TABLE OF CONTENTS
Section Page
1. Scope ...
1.1 Purpose ..

1.2 Mission ..

1.3 Scope ...
2. Applicable Documents
3. Tactical Digital System Requirements

31General ...
3.2 Program Description

pspc-t3 3.3 Functional Description
3.4 Detailed Functional Requirements
3.5 Adaptation ..
4. Quality Assurance Provisions
4.1 General ..
4.2 Test Requirements
4.3 Acceptance Test Requirements
5. Preparation for Delivery
6. tiotes ...
Appendixes

A. Applicable Documents
B. Glossary ..
C. Mathematical Analysis
D. Miscellaneous Items

pspc t4 LIST OF FIGURES
*Figure Page

pspc-ti LIST OF TABLES
Table Page

pspc_hd@ spec head ing@

0110S AP-265

Block ID BlocK
pspc to PROGRAM PERFORMANCE SPECIFICATION

FOR

pspcnrm2@ @program name@

pspc-t7 1. Scope
--- ---

pspc t8 1.1 Purose

pspc-t9 1.2 Mission

pspc-tlO 1.3 Sope
--

pspc til 1.3.1 Identification
-- ---------------- ------------------------------ -------

pspc-t12 1.3.2 Functional Summary
--- -

pspc-t13 2. Applicable Documents

pspc t14 3. Tactical Digital System Requirements

pspc-tiS 3.1 General

pspc-t16 3.2 Program Description

pspc-t17 3.2.1 General Description

pspc-t18 3.2.2 Peripheral Equipment Identification

pspc-t~ 3.2.3 Interface Identification
----------------- ---
pspc-t20 3.3 Functional Description

pspc-t21 3.3.1 Equipment Descriptions
-------- --

pspc-t22 3.3.2 Digital Processor Input/Output Utilization Table

pspc t23 3.3.3 Digital Processor Interface Block Diagram

pspc-t24 3.3.4 Program Interfaces

pspc-t25 3.3.5 Function Description

pspc-t26 3.4 Detailed Functional Requirements

pspc_t27 3.4.n Introduction

pspc-t28 3.4.n.1 Inputs

pspc-t29 3.4.n.2 Processing

pspc-t30 3.4.n.3 Outputs

--

OllOs AP-27

Block ID Block
pspct31 3.4.n.4 Special Requirements

pspct32 3.5 Adaptation

pspc_t33 4. Quality Assurance Provisions

pspc__t34 4.1 General

pspc_t35 4.2 Test Requirements

pspc_t36 4.3 Acceptance Test Requirements

pspct37 5. Preparation for Delivery

pspc_t38 6. Notes

pspc_t39 Appendix A. Applicable Documents

pspc_t40 Appendix B. Glossary

pspct41 Appendix C. Mathematical Analysis

pspct42 Appendix D. Miscellaneous Items

0110S AP-28

3.AP.SPS.l.2.3 SOD Template

The SOD template is chosen by the specifict ion specialist module
when (spec type]-sod. The template is derived from the skeleton System
Operatinal Design Document specified in appendix G of [SAM rqmtl. The
outline generated by the specialist module will be identical to that skeleton
specification with the addition of the actual values for the data derived from
product characteristics.

Block ID Block
sspc-date@ @spec date@

--------- -- --------- ------- -------------------- ---------

sspc-tl SYSTEM OPERATIONAL
DESIGN DOCUMENT 0

FOR

sspc-nml@ @program name@
----------------------- - -- - ------------------- --- ---- -----

,4spc-t2 Prepared by
---- ------------------------- ------------ ------------------- A

sspc _prep@ @preparer@

TABLE OF CONTENTS
Section Page
1. Introduction ..
1.1 Purpose ...
1.2 Mission ...
1.3 Scope ...
1.4 Concept of Operations
1.5 Operational Program Design Concept
2. Applicable Documents.;....................................
3. Operational Program Design
3.1 General ...
3.2 Program Support and Control Functions
3.3 Operator Function Support
3.4 Operator's Function Program Design
4. System Equipment Operation
4.1 General ..

sspc_t3 4.2 Combat Direction System
4.3 Weapon Systems Equipment
4.4 Peripheral Systems Equipment
5. Compatibility ...
5.1 General ...
5.2 Peripheral System Interface
5.3 Operator Interface
5.4 Intersystem On-Line Interface
5.5 1/0 Utilization Table
5.6 Equipment Arrangement
6. Constraints ..
5.1 General ...
7. Program Design Budget
Appendixes

A. Applicable Documents
B . Glossary ..

OllOs AP-2 9

Block ID Block
sspc-t4 LIST OF FIGURES

Figure Page

sspc-t5 LIST OF TABLES
Table Page

sspchd@ @spec heading~d

sspc_t6 SYSTEM OPERATIONAL DESIGN DOCUMENT
FOR

sspc_nnm2@ @program name@

sspc_t 1. Introduction

sspc-t8 1.1 Purpose

sspc t9 1.2 Mission

sspc _tlO 1.3 Scope

sspc_til 1.3.1 Identification

sspc_t12 1.3.2 Summary

sspc_t13 1.4 Concept of Operations

sspc _t14 1.5 Operational Program Design Concept

sspc_tl5 1.5.1 Program Construction

sspc-t16 1.5.2 Program Capacities

sspc t17 1.5.3 Console Modes and Service Arrays

sspc_tlB 2. Applicable Documents

sspc-spcs@ .@mil specs@

sspc_stds@ @mil standards@

sspc_t19 3. Operational Program Design

sspc-t20 3.1 General

sspc----21 --3.2--Progra----Support----and--Control---Functions--

sspc_t22 3.21 Program SupportanCol Functions

sspc t23 3.2.2 Program Control

sspc t24 3.2.3 Central Stores and Service Routines

0110S AP-30

Block ID Block

sspct25 3.3 Operator Function Support

sspct26 3.3.1 Data Readout Implementation

sspc_t27 3.3.2 Operator Action Button Implementation

sspct28 3.3.3 Symbology Implementation

sspct29 3.3.4 Console Mode and Service Array Implementation

sspc-t30 3.4 Operator's Function Program Design

sspc_t3l 3.4.1 Input Operations

sspct32 3.4.2 User Operations

sspct33 4. System Equipment Operation

sspct34 4.1 General

sspc_t35 4.2 Combat Direction System Equipment

sspct36 4.3 Weapons Systems Equipment

sspct37 4.4 Peripheral Systems Equipment

sspct38 5. Compatibility
---- ------- -------- ---- ~----- - ----

sspc-t39 5.1 General

sspc-t40 5.2 Peripheral System Interface

sspc_t4l 5.3 Operator Interface

sspct42 5.4 Intersystem On-Line Interface

sspc t43 5.5 1/0 Utilization Table

sspc_t44 5.6 Equipment Arrangement

sspct45 6. Constraints

sspc__t46 6.1 General

sspct47 7 Program Design Budget

sspc_48 Appendix A. Applicable Documents

sspc_48 Appendix B. Glossary

OllOs AP-31

9

4;

3.AP.SPS.l.2.4 FOD Template

The FOD template is chosen by the specification specialist module
when [spec type]-fod. The template is derived from the skeleton Functional
Operational Design. Document specified in appendix H of [SAM rqmt]. rhe

outline generated by the specialist module will be identical to that skeleton
specification with the addition of the actual values for the data derived from

product characteristics.

Block ID Block lee
fspc_date@ @spec date@.

fspc_tl FUNCTIONAL OPERATIONAL
DESIGN DOCUMENT

FOR

fspcnml@ @program name@

fspc_.t2 Prepared by

fspc_prep@ @preparer@

TABLE OF CONTENTS
Section Page
1. Introduction ...
1.1 Purpose ..
1.2 Function Requirement
1.3 Scope ..
1.4 Operational Programs
2. Applicable Documents

3. Operational Design Components
3.1 General ..
3.2 Operator Actions

fspc t3 3.3 Action Data Processing
3.4 Console Modes And Arrays

4. Operator Function Sequence
4.1 General ..
4.2 Action Sequences.......................................
4.3 Operator Monitor Function
5. Test and Simulation Scenarios
5.1 General ..
5.2 Non-real-time Tests
5.3 Real-time Tests ..
5.4 Jon-real-time Simulation
5.5 Real-time Simulation
Appendixes

A. Applicable Documents
B. Glossary ...

fspct4 LIST OF FIGURES
Figure Page

fspc t5 LIST OF TABLES
Table Page

OllOs AP-32

Block ID Block
fspc-hd ,Ispec tieadingl-

fspc-tb FUNCTIONAL OPERATIONAL DESIGN DOCUMENT
FOR

fspc-nm2@ @program name@

fspc-t7 1. Introduction

fspc-t8 1.1 Purpose

fspc-t9 1.2 Function Requirement

fspc-tlO 1.3 Scope

fspc til 1.3.1 Identification

fspc-t12 1.3.2 Sulmmary -

fspc-t13 1.4 Operational Programs

fspc t14 2. Applicable Documents

fspc-spcs@ @mil specs@

fspc stds@ @mil standards@

fspc t15 3. operational Design Components

fspc-t16 3.1 General

fspc-t17 3.2 operator Actions

fspc t18 3.2.1 Variable Action Button Allocation

fspc-t19 3.2.2 Fixed Action Button Allocation

fspc_t20 3.2.3 Number Entry Data Allocation

fspc-t21 3.2.4 General Purpose Action Codes

fspc-t22 3.2.5 Color Coding

fspc-t23 3.3 Action Data Processing

fspc-t24 3.3.1 Algorithms Implemented

fspc-t25 3.3.2 Communication Pzrcessing

41fspc t26 3.3.3 Display Processing

fspc-t27 3.4 Console Modes And Arrays

01109 A.P-33

Block ID Block

fspct28 3.4.1 Console Mode

fspc_t29 3.4.2 Console Arrays

fspct30 4. Operator Function Sequence

fspct31 4.1 General

fspct32 4.2 Action Sequences

fspct33 4.2.1 Alerts

fspct34 4.2.2 Updates

fspc_t35 4.2.3 Communication Action

fspct36 4.3 Operator Monitor Function

fspct37 4.3.1 Tactical Displays

fspct38 4.3.2 Digital Displays

fspct39 4.3.3 Communication Guard

fspct40 5. Test and Simulation Scenarios

fspc-t41 5.1 General

fspc_t42 5.2 Non-real-time Tests

fspct43 5.3 Real-time Tests

fspc_t44 5.4 Non-real-time Simulation

fspct45 5.5 Real-time Simulation

Appendix A. Applicable Documents

Appendix B. Glossary

3.AP.SPS.l.3 Local Dictionary

Data item Definition

[edit_object] a data item that conveys an editing action to be performed

on a product building block of the specification object

[objid] the identification of the object that represents the

product being produced through the facilities of this

OllOs AP-34

specialist module; the identification is composed of [prod

type] and [packageid]

[package_id] the project identification and version identification of

the acquisition package

[prod-type] the type of product being produced by this specialist

module; in this case the value of (prodtypel is

"specification"

[read idl the identification of the specification object to be read

from auxiliary storage

[specchar] the product characteristics needed by the specification

specialist module to generate the specification outline

[spec-type] the type of specification to be produced for the

acquisition package; allowable values are: typea, pps,

fod, or sod

@mil specs@ a list of the military specifications that are applicable

to this procurement

@mil standards@ a list of the military standards that are applicable to

this procurement

@preparer@ the name and address of the activity that is preparing the

specification

@program name@ the name of the program for which the subject of this

software acquisition is being procured; used for PPS, FOD,

SOD

@spec date@ the publication date of the specification

@spec heading@ data used as a heading on each page of the body of the

specification

OllOs AP-35

p

system name@ the name of the embedded computer system for which the

subject of this software acquisition is being procured;

used for type A specification

%generated% the status of the specification object has been set to

"generated", i.e., the product characteristics necessary

for generating the outline of the appropriate specification

have been acquired and the specification outline has been

generated

%incomplete% the status of the specification object has been set to

"incomplete", i.e., the specification object has been

instantiated, but the acquisition of those product

characteristics necessary for generating the outline of the

appropriate specification has not been completed

%null% an instance of a specification object for the current

context does not exist

3.AP.SPS.1.4 Information Hidden

1. How the specification object is represented and stored.

2. The implementation of actions on the specification object by the

specification specialist module.

3.AP.SPS.2 Design Support

3.AP.SPS.2.1 Interface Assumptions

3.AP.SPS.2.2 Design Issues

3.AP.SPS.2.3 Implementation/Configuration Information

J 3.AP.SPS.2.4 References

None.

0110S AP-36

3.AP.SWS Statement of Work Specialist (SWS) Module

The statement of work specialist module supports the creation of a

statement of work for an acquisition package. The specialist module uses a

template to assemble a statement of work outline. The template supplies botn

the initial structure and the initial content of the statement of work

outline. The content of the outline is provided from literal text strings and

from information derived from product characteristics. In the latter case,

the template guides the specialist module in acquiring the information on

product characteristics. The specialist module acquires further information

as it becomes available to add, delete, and modify the text used to form tne

statement of work.

3.AP.SWS.l Function Definition

3.AP.SWS.l.l Actions

The statement of work specialist module operates as a process that

performs actions when presented with a stimulus in the form ot new or modified

data items. These actions may result in a change or refinement to the

statement of work object and/or a change to the statement of work status.

Action Condition Data Item Response

+cr sow+ %null% [obj id] %incomplete,
Establishes a statement of work object by creating a statement of wor.,
appropriate to the user's requirements. The statement of work object is
identified by [objid].

+gensow+ %incomplete% [sow-char] %generated>

[obj id]
Refines the statement of work object identified by [obj idl b% ,eneriti:,

the statement of work outline. The specialist module generates tr e i:ii-
statement of work outline by assembling the product building biocKs
sequentially from the statement of work template. When it encounters
product building block that requires derivation of information from L:.e
product characteristics the specialist module acquires the needed iata itm
and performs that function.

+mod sow+ .generated% [edit object] ',incompiete' or

(obj-id] >gene rated'
Refines the generated statement of work object identified by Lobj itl by

acquiring one or more data items to set or change corresponding elements
the statement of work object. If a data item changes the value or i

OliOs AP-37

product characteristic, the specialist module responds with %incomplete to

force regeneration of those portions of the outline that depend on the
product characteristic whose value has changed. When no data items are

available, the statement of work specialist module waits for one or more to

be made available.

+cancel-sow+ NOT %null% [objid] %null%

The statement of work object identified by [objid] is deleted.

+printsow+ NOT 'null% [obj id]

An image of the statement of work object identified by [obj id] is printed.

+displaysow+ NOT %null% [objid]

An image of the statement of work object identified by [obj id] is
displayed.

+writesow+ NOT %null% fobjid]

A copy of the statement of work object identified by [obj id] is
transferred to the location in auxiliary storage addressed by the

identification of the object. If a prior copy of the object had been made,

it is deleted when the current copy is successfully completed.

+read-sow+ [read id] %incomplete% or

T [obj id] %generated%

The copy of the statement of work object at a specified location in
auxiliary storage is read by the statement of work specialist module. The

location from which the object is read may be specified as either the

current context or another context. In the former case, the effect is to
read the most recently saved version of the statement of work object; in
the latter case, the effect is to read a saved copy of a statement of work

object from another acquisition package. The object that is read becomes
the statement of work object identified by [objid] of the current context

replacing the statement of work object which may have existed prior to the

invocation of this action.

0l10s AP-38

3.AP.SWS.i.2 Statement of Work Document Lemplate

The template used by the statement of work specialist module to generate a

statement of work outline is described in tnis section. rhe statement of worK

template guides the specialist module in generating a statement of work

outline and in making modifications to tne statement of work object in

response to editing actions. A template is composed of uniquely identified

product building blocks. Certain of the product building blocks contain

literal text strings and will appear in the generated outline as they are

shown in the template. Others contain data items bracketed with "". These

data items are derived from product characteristics acquired by the specialist

module while generating the outline. The identifiers of blocks containing

derived information are denoted with a suffix of "@".

The template is derived from the skeleton statement of work specified in

appendix B of [SAM rqmt]. The outline generated by the specialist module will

be identical to that skeleton statement of work with the addition of the

actual values for the data derived from product characteristics.

Block Id Block

sow-date@ @sow date@

sow ti STATEMENT OF WORK

FOR

sow nml@ @program name@

sow t2 Prepared by

sowprep@ @preparer@

TABLE OF CONTENfS
Section/Paragraph Page
i. Scope ..
2. Applicable Documents
2.1 Military Specifications
2.2 Military Standards
2.3 Other Publications

sow t3 3. Requirements ...
3.1 Computer Program Performance Requirements
3.2 Computer Program Design Requirements
3.3 Computer Program Production
3.4 Computer Program Operation
3.5 Program Test

OllOs AP-39

Block Id Block
3.6 Quality Assurance ..

sow t3 3.7 Configuration Management
cont'd 3.8 Software Management Control

3.9 Work Breakdown Structure

--

sow hd@ @heading@

sow-t4 STATEMENT OF WORK
FOR

sow nm2@ @program name@
--- 1

sow-t5 1. Scope. .4

sow t6 2. Applicable Documents
The following documents of the issue in effect on the date of

solicitation form a part of this SOW to the extent specified herein.

sow-t7 2.1 Military Specifications

sowspcs@ @mil specs@

sowt8 2.2 Military Standards

sow stds@ @mil standards@

sowt9 2.3 Other Publications

sowtlO 3. Requirements

sow tll 3.1 Computer Program Performance Requirements.
The contractor shall determine tne detailed program

performance requirements for all software as specified in subsection
5.1 of MIL-STD-1679.

sow-t12 3.2 Computer Program Design Requirements.
The contractor shall develop the dt-ailed program design

requirements in accordance with subsection 5.2 of MIL-STD-1679.

sow_t13 3.3 Computer Program Production.
The contractor shall adhere to the detailed program design

requirements as approved by the Government, and the System
Specification in producing all computer programs. The contractor
shall also use chief programmer teams and conform to the
requirements of subsection 5.5 of MIL-SfD-1679.

sow-t14 3.4 Computer Program Operation.
The contractor shall determine the procedures for the

operation of the defense system software in accordance with

subsection 5.7 of MIL-STD-1679.

01108 AP-40

Ii
•~ ~ ~~~~ - -'. -

Block Id Block

sow t15 3.5 Program Test.
The contractor shall determine the scope of tests required to

ensure that the program being developed meets all specified
technical, operational, and performance requirements and the

acceptance criteria. The contractor shall be responsible for
accomplishing all development testing. Testing shall be performed
in accordance with requirements of subsection 5.8 of MIL-STD-1679,
"Program Testing", unless otherwise specified below.
Informal testing shall meet the following requirements:

° Tests shall be monitored primarily by contractor personnel

and shall be subject to informal monitoring by the
Government or its representative.

o The development plan shall be part of the TEMP or TEP.
° The tests shall constitute contractor internal milestones

and informal project milestones.
Formal testing shall meet the following requirements:

o The test shall constitute an official project milestone.

o The test shall be officially witnessed by the Government
during its performance and shall be conducted in accordance
with previously approved test specifications and procedures.

° All items that affect the test or that are used in the test,
including hardware or software, must be certified before
test.

o Tests shall be subsequently audited and reviewed by
Government Quality Assurance (QA).

sow :16 3.5.1 Program Unit Tests.
Each lowest compilable unit will undergo the following tests as

a minimum:
a. Peer review

b. Error-free compilation
c. Exercise of logical execution paths
d. Analysis of data flow monitoring, results of assignment, and

exchange statements

e. Validation of intended function
Upon completion of unit testing, the software unit shall be

incorporated under library control.

sow t17 3.5.2 Module Tests.
As specified in paragraph 5.8.1 of MiL-STD-1679.

sow_t18 3.5.3 Subprogram Tests.
As specified in paragraph 5.8.2 of MIL-STD-1679.

sow-t19 3.5.4 Program Performance Tests.
As specified in paragraph 5.8.3 of MIL-STD-1679.

sowt20 3.5.5 Systems(s) Integration Test.
System(s) integration testing involves the testing of

software-software and software-hardware interfaces as subsystems are
integrated into a larger system (or as one system in integrated with
another). The contractor shall plan for and demonstrate progress

against the plan to the Government during system integration test.
Specific integration milestones shall be identified and scheduled.

OllOs AP-41

Block Id Block
sow-t20 The Government shall be kept advised of the test schedules so that a
cont'd designated Government representative can witness these tests.

These tests shall be adequate to determine compliance with the
applicable technical, operational, and performance requirements. As
a minimum, system integration testing shall be performed to:

a. Verify the total man-machine interface
b. Validate system initiation, data entries via peripheral

devices, program loading, restarting, and the monitoring and
controlling of system operation from display consoles and
other control stations as applicable

c. Verify the interfacing of all equipment specified in the
system requirements.

d. Verify the capability of the program to satisfy all

applicable system and program performance requirements
e. Verify the capability of the system to handle properly and

survive erroneous inputs
f. Verify inter - and intrasystem message formats and interfaces

sow t21 3.5.6 Software System Performance Test.
Software system performance testing is formal and represents

the final level of Development Test and Evaluation (DT&E) that is

performed for the project. The contractor shall schedule, and the
Government shall witness, a software system performance test to

certify that the hardware and software represent the system as
defined in the System Specification and that the QA provisions

specified in Section 4 of the System Specification have been
satisfied. As a minimum, software system performance testing shall
be performed to:

a. Verify the total man-machine interface
b. Validate system initiation, data entries via peripheral

devices, program loading, restarting, and the monitoring and
controlling of system operation from display consoles and
other stations as applicable

c. Verify the interfacing of all equipment specified in the
system requirements

d. Verify the capability of the program to satisfy all
applicable system, program performance, and QA requirements

e. Verify the capability of the system to handle erroneous
inputs properly and to survive them

f. Verify inter - and intrasystem message formats and interfaces
g. Verify system timings and specified constraints
h. Verify constraints specified in this SOW.

sow t22 3.6 Quality Assurance.
The contractor shall implement a software quality assurance

program in accordance with subsection 5.9 of MIL-STD-1679.

sow t23 3.7 Configuration Management.
The contractor shall develop and implement a software

configuration management program in accordance with paragraphs 5.5.4
and 5.11 of MIL-STD-1679, and subsections 1.3, 3.0, 5.1 and
Appendices I, VIII, IX, X, XII, XIV, and XV of MIL-STD-483, except
as otherwise noted below in regard to configuration identification.
Where conflicts arise between these standards, MIL-STD-1679 will

OllOs AP-42

Block Id Block

sow t23 govern. The contractor shall ensure that software CM procedures are
conrt'd integrated with other CM procedures addressing the total system.

sow t24 3.7.1 Configuration Identification

sow-t25 3.7.1.1 Formal Baselines.
The formal baselines required for the program are defined as
follows:

sow fbd@ 0 The Functional Baseline is determined by the @FB
determinant@ and is under the configuration control of the
Government.

-------- --)
sow abd@ The Allocated Baseline is determined by the @AB

determinant@. The Allocated Baseline shall be under
Government control.

sowdbd@ 0 The Developmental Baseline is dynamic and is initially
determined by the @DB determinant@. The @DB secondary
determinants@, the final deliverable version of the program,
all descriptive documentation, and the user manuals are also

components of the Developmental Baseline and are added to
the baseline as they are approved or accepted. As programs
are written and pass minimum acceptance criteria, they shall
be added to the Developmental Baseline under libary

control. In its final configuration the Developmental
Baseline shall constitute the software product baseline.
The Developmental Baseline shall be under contractor control
until final acceptance by the Government as the product

baseline.

sowpbd@ 0 The Product Baseline is determined by complete updated
documentation that has been verified at PCA to reflect
accurately the fully tested and accepted computer programs.
This includes the final @PB determinant@, and all

descriptive documentation and user manuals.

sow-t26 3.8 Software m-AP-- it Control.
The cont 11 implement a managment system for the

software de Zort that is acceptable to the procuring
agency. crol shall conform to the requirements of
subsecti .-STD-1679 except as otherwise specified below.

sow-t27 3.8.1 R,
The r shall include formal and informal software

reviews i. aevelopment schedule as described in succeeding
paragraphE hese reviews can be incorporated with appropriate

hardware reviews of a similar nature.

sow-t28 3.8.1.1 Formal Reviews.
Formal reviews are those specific reviews designated by title

in MIL-STD-1521A. These include the technical design reviews and
audits for computer programs as follows. The Periodic Status Review
is included as a formal review.

0llOs AP-43

Block Id Block
sow srr@ 3.8.1.1.1 System Requirements Review.

The contractor shall hold a System Requirements Review (SRR)
during the Requirements Definition activity to present the
preliminary System Specification following functional analysis and
preliminary requirements allocation. The contractor shall
distribute a copy of the preliminary System Specification to the
procuring agency for review at least @SRR prereview@ days before the
SRR. All comments and questions arising from this review shall be
returned to the contractor no later then @SRR prereview reply@ days
before the SRR. The SRR shall be conducted in accordance with
MIL-STD-1521A. The contractor shall answer the questions and
comments generated by the procuring agency and shall make any
required modifications to the System Specification.

sow sdr@ 3.8.1.1.2 System Design Review
The contractor shall hold a System Design Review (SDR) for the

purpose of reviewing and approving the final System Specification.
The contractor shall distribute a copy of the System Specification
to the procuring agency for review at least @SDR prereview@ before
the SDR. All comments and questions arising from this review shall
be returned to the contractor no later than @SDR prereview reply@
before the SDR.

The SDR shall be conducted in accordance with MIL-STD-1521A.
The contractor shall answer the questions and comments generated by
the procuring agency and shall make any required modifications to
the System Specification. The Preliminary Program Performance
Specification (PPS) will be presented at the SDR.

sow_pdr@ 3.8.1.1.3 Preliminary Design Review
The contractor shall hold a Preliminary Design Review (PDR) for

the purpose of reviewing and approving the final PPS. The
contractor shall distribute a copy of the PPS to the procuring
agency for review at least @PDR prereview@ before the PDR. All
comments and questions arising from this review shall be returned to
the contractor no later than @PDR prereview reply@ before the PDR.
The PDR shall be conducted in accordance with MIL-STD-1521A. The
contractor shall answer the questions and comments generated by the
procuring agency and shall make any required modifications to the
PPS.

The preliminary Interface Design Specification (IDS), the
preliminary Test Plan (TP), and the preliminary Program Design
Specification (PDS) shall be presented at the PDR for procuring
agency review and comment.

sow cdr@ 3.8.1.1.4 Critical Design Review
The contractor shall hold a Critical Design Review (CDR) for

the purpose of reviewing and approving the PDS, TP, and final IDS.
The contractor shall distribute a copy of the PDS, TP, and IDS to
the procuring agency for review at least @CDR prereview@ before the
CDR. All comments and questions arising from this review shall be
returned to the contractor no later than @CDR prereview reply@
before the CDR.

The CDR shall be conducted in accordance with MIL-STD-1521A.
The contractor shall answer the questions and comments generated by

OliOs AP-44

Block Id Block
sow cdr@ the procuring agency and shall make any required modifications to

the PDS, TP, and IDS.

sowt29 3.8.1.1.5 Functional Configuration Audit
A Functional Configuration Audit (FCA) shall be conducted to

determine whether the CPCI has satisfied all requirements of tLhc
CPCI PPS. The FCA shall be conducted according to MIL-STD-1521A.

sowt30 3.8.1.1.6 Physical Configuration Audit
A Physical Configuration Audit (PCA) shall be conducted to

determine whether the documentation accurately reflects the as-built
computer programs. The conduct of a PCA is governed by

MIL-STD-1521A.

sow t31 3.8.1.1.7 Formal Qualification Review
The contractor shall hold a Formal Qualification Review (FQR)

for the purpose of reviewing the performance of the CPCI(s) as
determined through test to verify that the CPCI(s) complies with its
Program Performance Specifications and System Specification. On
completion of FQR, the CPCI(s) shall be Government certified. The
FQR shall be conducted in accordance with MIL-STD-1521A.

sow t32 3.8.1.1.8 Periodic Software Project Status Reviews
The contractor shall schedule monthly project status reviews

throughout the contract period. These reviews will be attended by
management personnel from the procuring agency, the contractor, and

the subcontractor(s). Senior technical personnel shall attend if
the contractor deems their presence to be required.

sow t33 3.8.1.2 Informal Reviews
The contractor shall conduct informal reviews throughout the

software development cycle. These reviews are held for the purpose
of domonstrating to the procuring agency that the software
development and documentation are proceeding according to the
approved specifications. Informal reviews may be held to present
the results of analysis in answer to a procuring agency question or
action item from a formal review. These reviews and demonstations

do not require formal, deliverable supporting documentation;
however, information as to their goals and a means of evaluating

their performance shall be made available to the procuring agency
before any such review. In-process reviews are informal technical
reviews that are held to review the test specifications and
procedures. They shall also be held to review the results of the

structural walkthroughs of major segments of the software and to
demonstrate progress during testing. Any discrepancies noted during

the review or demonstration shall be recorded as a Software Trouble
Report or an action item. The disposition of these items shall be
monitored and included in the monthly progress reports to the
procuring agency.

0110s AP-45 j

Block Id Block
sow wbs@ 3.9 Work Breakdown Structure

The preliminary Work Breakdown Structure (WBS), figure @WBS
figure #@, graphically portrays the schedule of work to be
accomplished under this contract consistent with the scope of work

defined in the System Specification and SOW.
Using the WBS supplied, the contractor will develop at least

two additional levels of WBS elements for the Contractor WBS
(CWBS). The CWBS shall be included as part of the submitted
proposal and shall be presented in sufficient detail to show the
bidder's understanding of the system requirements, the components

composing the system, and the tasks to be performed during the
acquisition cycle.

The CWBS shall be constructed so that the procuring agency can

readily identify the structural hierarchy of each component of the
software system. In addition to the operational software
components, the CWBS shall include support software that must be
developed or modified by the contractor, as well as
Government-furnished software that must be modified.

The successful bidder shall add levels to his CWBS, if any are
specified by the Government as being necessary, within @CWBS
delivery@ from award of contract. Any changes to the CWBS after

that time must receive approval from the procuring agency's program
office.

3.AP.SWS.l.3 Local Dictionary

Data item Definition

[editobject] a data item that conveys an editing action to be performed

on a product building block of the statement of work object

[objid] the identification of the object that represents the

product being produced through the facilities of this

specialist module; the identification is composed of [prod

type] and [package id]

[package_id] the project identification and version identification of

the acquisition package

OllOs AP-46

(prod-type] the type of product being produced by this specialist

module; in this case the value of [prod-type] is

"statement of work"

[readid] the identification of the statement of work object to be

read from auxiliary storage

[sow-char] the product characteristics needed by the statement of work

specialist module to generate the statement of work outline

@AB determinant@ a list of the formal documents which comprise the Allocated

Baseline for configuration management

@CDR prereview@ the number of days prior to Critical Design Review that the

Program Design Specification, est Plan, and Interface

Design Specifications will be made available to the

procuring agency by the contractor

@CDR prereview reply@ the number of days prior to Critical Design Review that

the questions and comments arising from the review of the

Program Design Specification, Test Plan, and Interface

Design Specifications will be made available to the

contractor by the procuring agency

@CWBS delivery@ the number of days following award of contract that the

contractor shall add levels to the Contractor Work

Breakdown Structure

@DB determinant@ the formal documents which comprise the initial

Developmental Baseline for configuration management

@DB secondary determinants@ the formal documents which comprise the final

Developmental Baseline for configuration management

@FB determinant@ the formal documents which comprise the Functional Baseline

for configuration management

Ollos AP-47

@mil specs@ a list of the military specifications that are applicable

to this procurement

@mil standards@ a list of the military standards that are applicable to

this procurement

@PB determinant@ the formal documents which comprise the Product Baseline

for configuration management

@PDR prereview@ the number of days prior to Preliminary Design Review that

the final Program Performance Specification will be made

available to the procuring agency by the contractor

@PDR prereview reply@ the number of days prior to Preliminary Design Review

that the questions and comments arising from the review of

the final Program Performance Specification will be made

available to the contractor by the procuring agency

@preparer@ the name and address of the activity that is preparing the

statement of work

@program name@ the name of the program for which the subject of this

software acquisition is being procured

@sow date@ the publication date of the statement of work

@sow heading@ data used as a heading on each page of the body of the

statement of work

@SDR prereview@ the number of days prior to System Design Review that the

final System Specification will be make available to the

procuring agency by the contractor

@SDR prereview reply@ the number of days prior to System Design Review that

the questions and comments arising from the review of the

final System Specification will be made available to the

OllOs .,P-48

contractor by the procuring agency

@SRR prereview@ the number of days prior to System Requirements Review tnat

the preliminary System Specification will be made available

to the procuring agency by the contractor

@SRR prereview reply@ the number of days prior to System Requirements Review

that the questions and comments arising from the review of

the preliminary System Specification will be made available

to the contractor by the procuring agency

@WBS figure #@ the figure number of the WBS figure in the statement of work

,generated% the status of the statement of work object has been set to

"generated", i.e., the product characteristics necessary

for generating the outline of the statement of work have

been acquired and the statement of work outline has been

generated

%incomplete; the status of the statement of work object has been set to

"incomplete", i.e., the statement of work object has been

instantiated, but the acquisition of those product

characteristics necessary for gLnerating the outline of the

statement of work has not been completed

,.null% an instance of a statement of work object for th, irrent

context does not exist

3.AP.SWS.l.4 Information Hidden

i. How the statement of work object is r i-esented and stored.

2. The implementation of actions on the statement of w(k object by the

statement of work specialist module.

0110s AP-499.

3.AP.SWS.2 Design Support

3.AP.SWS.2.1 Interface Assumptions

3.AP.SWS.2.2 Design Issues

3.AP.SWS.2.3 Implementation/Configuration Information

3.AP.SWS.2.4 References

None.

0

iOliOs AP-50

3.AP.WBS Work Breakdown Structure Specialist (WBS) Module

The work breakdown structure specialist module supports toe creation of

work breakdown structure for an acquisition package. The specialist module

uses a template to assemble a work breakdown structure. The template suppli>:

both the initial structure and the initial content of the work breakdown

3 tructure. The content of the work breakdown structure is provided from

literal text strings and from information derived from product

characteristics. In the latter case, the template guides the specialist

module in acquiring the information on product characteristics. The

specialist module acquires further information as it becomes available to a

delete, and modify the text used to form the work breakdown structure.

3.AP.WBS'. Function Definition

3.AP.WBS.l.l Actions

The work breakdown structure specialist module operates as a process that

performs actions when presented with a stimulus in the form of new or modifiei 1

data items. These actions may result in a change or refinement to t-e wrc

breakdown structure object and/or a change to the work breakdown structure

status.

Action Condition Data Item Response

+cr wbs+ 'null% [obj_id] %incompleteo

Establishes a work breakdown structure object. The work breakdown
structure object is identified by [objid].

+genwbs+ %incomplete% [wbs char] %generated,

[obj id]
Refines the work breakdown structure object identified by [obj i:',
generating the work breakdown structure hierarchy. The specialist mLn.
generates the initial work breakdown structure by assembling the pro ,uct
building blocks sequentially from the work breakdown structure tempLate.
When it encounters a product building block that requires derivation -,
information from the product characteristics the specialist mocuLe iculr ,'
the needed data item and performs that function.

+modwbs+ %generated% [edit object] *incomplete)r

[objid] %generated%
Refines the generated work breakdown structure object identified Iv
id] by acquiring one or more data items to set or chang' eleme:its j :e
work breakdown structure object. If a data item changes the value tr

OllOs AP-51

product characteristic, the specialist module responds with %incomplete% to
force regeneration of those portions of the outline that depend on the
product characteristic whose value has changed. When no data items are
available, the work breakdown structure specialist module waits for one or

more to 1e made available.

+cancel wbs+ NOT %null% [obj_id] %null%

The work breakdown structure object identified by [objid] is deleted.

+print wbs+ NOT %null% [objid]

An image of the work breakdown structure object identified by [objid] is
printed.

+display wbs+ NOT %null" [objid]

An image of the work breakdown structure object identified by [objid] is
displayed.

+write wbs+ NOT %null% [objid]
A copy of the work breakdown structure object identified by fobjid] is
transferred to the location in auxiliary storage addressed by the
identification of the object. If a prior copy of the object had been made,
it is deleted when the current copy is successfully completed.

+read wbs+ [read id] %incomplete% or

[obj id] %generated%
The copy of the work breakdown structure object at a specified location in
arxiliary storage is read by the work breakdown structure specialist
module. The lo'cation from which the object is read may be specified as
eitner the current context or another context. In the former case, the

effect is to read the most recently saved version of the work breakdown
structure object; in the latter case, the effect is to read a saved copy
of a work breakdown structure object from another acquisition package. The
object that is read becomes the work breakdown structure object identified
by [obj_id] of the current context replacing the work breakdown structure
object which may have existed prior to the invocation of this action.

01iOs AP--52

3.AP.WBS.l.2 Work Breakdown Structure Document Template

The template used by the work breakdown structure specialist module to

generate a work breakdown structure is described in this section. The work

breakdown structure template guides the specialist module in generating a work

breakdown structure hierarchy and in making modifications to the work

breakdown structure object in response to editing actions. The template is

composed of uniquely identified product building blocks and their hierarchical

relationships with each other. Certain of the product building blocks contain

literal text strings and will appear in the generated outline as they are

shown in the template. Others contain data items bracketed with "@". These

data items are derived from product characteristics acquired by the specialist

module while generating the work breakdown structure hierarchy. The

identifiers of blocks containing derived information are denoted with a suffix

of "@".

The template is derived from the skeleton work breakdown structure

specified in appendix D of [SAM rqmt]. The hierarchy generated by the

specialist module will be identical to that skeleton work breakdown structure

with the addition of the actual values for the data derived from product

characteristics.

Block Id Block

wbs nm@ @program name@

wbs tl SOFTWARE DEVELOPMENT

wbssql@ @seqno@

wbs t2 REQUIREMENTS ANALYSIS

wbssq2@ @seqno@Ol

wbs lst2@ @subsystem list@

wbs t3 PROGRAM PERFORMANCE REQUIREMENTS

wbssq3@ @seqno@02

wbs lst3@ @subsystem list@

wbs t4 PROGRAM DESIGN REQUIREMENTS

wbssq4@ @seqno@03

0110s AP-53

Block Id Block

wbs-lst4@ @subsystem list@~

wbs t5 PROGRAM PRODUCTION

wbs-sq5@ @seqno@O4

wbs-lst5@ (subsystem list@

wbs t6 PROGRAM TEST

wbs-sq6@ @seqno@05

wbs_1s61 01 - Program Unit
Tests

wbs_1s62 02 - Module Tests

wbs_1s63 03 - Subprogram Tests

wbs 1s64 04 - Program Performance
Tests

wbs_1s65 05 - System(s)
Integration

Test

wbs_1s66 .06 - Software System

wbs-t7. PROJECT CONTROL

wbs-sq7@ @seqno@06

wbs_1s71 01 - Administration

wbs_1s72 02 - Quality Assur-
ance

wbs_ ls73 03 - Configuration
Management

wbs_1s74 04 - Software
Management
Control

wbs-fg@ Figure IWBS figure 0@

------ --- --- --- - - - - - - - - - - - - - - -- - - - - - --I- - - - -

3.AP.WBS.1.3 Local Dictionary

Data item Definition

[edit-object] a data item that conveys an editing action to be performed

on a product building block of the work breakdown structure

object

[obj id] the identification of the object that represents the

product being produced through the facilities of this

specialist module; the identification is composed of [prod

type] and [packageid]

[package-id] the project identification and version identification of

the acquisition package

[prodtype] the type of product being produced by this specialist

module; in this case the value of [prod-type] is "work

breakdown structure

[read-id] the identification of the work breakdown structure object

to be read from auxiliary storage

[wbs char] the product characteristics needed by the work breakdown

structure specialist module to generate the work breakdown

structure outline

@program name@ the name of the program for which the subject of this

software acquisition is being procured

@seqno@ the first level work package number upon which all lower

level work package numbers in the work breakdown structure

hierarchy are based

@subsystem list@ a list of the software subsystems such that each is the

subject of a separate set of requirements, design, and

production activities; each element of the list consists of

a subsystem name and a subsystem work package number

OllOs AP-55

@WBS figure #@ the figure number of the WBS figure in the work breakdown

structure

%generated% the status of the work breakdown structure object has been

set to "generated", i.e., the product characteristics

necessary for generating the outline of the work breakdown

structure have been acquired and the work breakdown

structure outline has been generated

%incomplete% the status of the work breakdown structure object has been

set to "incomplete", i.e., the work breakdown structure

object has been instantiated, but the acquisition of those

product characteristics necessary for generating the

outline of the work breakdown structure has not been

completed

%null% an instance of a work breakdown structure object for the

current context does not exist

3.AP.WBS.l.4 Information Hidden

1. How the work breakdown structure object is represented and stored.

2. The implementation of actions on the work breakdown structure object

by the work breakdown structure specialist module.

3.AP.WBS.2 Design Support

3.AP.WBS.2.1 Interface Assumptions

3.AP.WBS.2.2 Design Issues

3.AP.WBS.2.3 Implementation/Configuration Information

3.AP.WBS.2.4 References

None.

Ollos AP-56

